导航:首页 > 研究方法 > 分析方法号

分析方法号

发布时间:2022-02-08 21:59:10

㈠ 组合逻辑电路的 分析方法

1、根据逻辑电路写出逻辑表达式。

2、逻辑表达式化简。

3、根据逻辑表达式画出真值表。

与逻辑表示只有在决定事物结果的全部条件具备时,结果才发生。输出变量为1的某个组合的所有因子的与表示输出变量为1的这个组合出现、所有输出变量为0的组合均不出现,因而可以表示输出变量为1的这个组合。

(1)分析方法号扩展阅读:

组合逻辑电路是指在任何时刻,输出状态只决定于同一时刻各输入状态的组合,而与电路以前状态无关,而与其他时间的状态无关。其逻辑函数如下:

Li=f(A1,A2,A3……An) (i=1,2,3…m)

其中,A1~An为输入变量,Li为输出变量。

组合逻辑电路的特点归纳如下:

① 输入、输出之间没有返馈延迟通道;

② 电路中无记忆单元。

㈡ 钢铁五元素分析方法的国标号是多少

钢铁分析方法通常分为化学分析法和仪器分析法。化学分析法有重量法和滴定法。目前使用仪器分析方法有吸光光度计、原子发射光谱法、原子吸收光谱法、极谱法、原子荧光光谱法、红外吸收法、X-身线荧光光谱法、电感耦合等离子体-原子发射光谱法(ICP-AES)、辉光放电、发射光谱法(GD、OES)及电感耦合等离子体、质谱法(ICP-MS)等。执行国家标准号码是一个系列:
GBT2022320钢铁及合金化学分析方法合集
GB-T 223.1-1981 钢铁及合金中碳量的测定 (0.1~5.0%)
GB-T 223.2-1981 钢铁及合金中硫量的测定 (0.003%以上)
GB-T 223.3-1988 钢铁及合金化学分析方法二安替比林甲烷磷钼酸重量法测定磷量 (0.01~0.80%)
GB-T 223.4-2008 钢铁及合金 锰含量的测定 电位滴定或可视滴定法
GB-T 223.5-2008 钢铁 酸溶硅和全硅含量的测定
GB-T 223.6-1994 钢铁及合金化学分析方法 中和滴定法测定硼量 (0.50~2.00%)
GB-T 223.7-2002 铁粉 铁含量的测定 重铬酸钾滴定法 (大于96%)
GB-T 223.8-2000 钢铁及合金化学分析方法 氟化钠分离—EDTA滴定法测定铝含量 (0.50~10.00%)
GB-T 223.9-2008 (GB-T 223.10-2000) 钢铁及合金 铝含量的测定铬天青S分光光度法
GB-T 223.10-2000 钢铁及合金化学分析方法 铜铁试剂分离—铬天青S光度法测定铝含量 (0.015~0.50%)
GB-T 223.11-2008 钢铁及合金 铬含量的测定 可视滴定或电位滴定法
GB-T 223.12-1991 钢铁及合金化学分析方法 碳酸钠分离—二苯碳酰二肼光度法测定铬量 (0.005~0.500%)
GB-T 223.13-2000 钢铁及合金化学分析方法 硫酸亚铁铵滴定法测定钒含量 (0.100~3.50%)
GB-T 223.14-2000 钢铁及合金化学分析方法 钽试剂萃取光度法测定钒含量 (0.0050~0.50%)
GB-T 223.15-1982 钢铁及合金化学分析方法 重量法测定钛 (1.00% 以上)
GB-T 223.16-1991 钢铁及合金化学分析方法 变色酸光度法测定钛量 (0.010~2.50%)
GB-T 223.17-1989 钢铁及合金化学分析方法 二安替比林甲烷光度法测定钛量 (0.10~2.400%)
GB-T 223.18-1994 钢铁及合金化学分析方法 硫代硫酸钠分离—碘量法测定铜量 (0.10~5.00%)
GB-T 223.19-1989 钢铁及合金化学分析方法 新亚铜灵—三氯甲烷萃取光度法测定铜量 (0.010~1.00%)
GB-T 223.20-1994 钢铁及合金化学分析方法 电位滴定法测定钴量 (3.00%以上)
GB-T 223.21-1994 钢铁及合金化学分析方法 5—Cl—PADAB分光光度法测定钴量 (0.0050~0.50%)
GB-T 223.22-1994 钢铁及合金化学分析方法 亚硝基R盐分光光度法测定钴量 (0.10~3.00%)
GB-T 223.23-2008 (GB-T 223.23-1994 GB-T 223.24-1994) 钢铁及合金 镍含量的测定 丁二酮肟分光光度法
GB-T 223.25-1994 钢铁及合金化学分析方法 丁二酮肟重量法测定镍量 2%) 以上
GB-T 223.26-2008 (GB-T 223.27-1994) 钢铁及合金 钼含量的测定 硫氰酸盐分光光度法
GB-T 223.28-1989 钢铁及合金化学分析方法 α—安息香肟重量法测定钼量 1.00~9.00%)
GB-T 223.29-2008 钢铁及合金 铅含量的测定 载体沉淀-二甲酚橙分光光度法
GB-T 223.30-1994 钢铁及合金化学分析方法 对—溴苦杏仁酸沉淀分离—偶氮胂Ⅲ分光光度法测定锆量 (0.0050~0.30%)
GB-T 223.31-2008 钢铁及合金 砷含量的测定 蒸馏分离-钼蓝分光光度法
GB-T 223.32-1994 钢铁及合金化学分析方法 次磷酸钠还原—碘量法测定砷量 (0.010~3.00%)
GB-T 223.33-1994 钢铁及合金化学分析方法 萃取分离—偶氮氯膦mA光度法测定铈量 (0.0010~0.20
GB-T 223.34-2000 钢铁及合金化学分析方法 铁粉中盐酸不溶物的测定 (0.10~1.00%)
GB-T 223.35-1985 钢铁及合金化学分析方法 脉冲加热惰气熔融库仑滴定法测定氧量 (0.002~0.10%)
GB-T 223.36-1994 钢铁及合金化学分析方法 蒸馏分离—中和滴定法测定氮量 (0.010~0.50%)
GB-T 223.37-1989 钢铁及合金化学分析方法 蒸馏分离—靛酚蓝光度法测定氮量 (0.0010~0.050%)
GB-T 223.38-1985 钢铁及合金化学分析方法 离子交换分离—重量法测定铌量 (1.00%以上)
GB-T 223.40-2007 (GB-T 223.39-1994) 钢铁及合金 铌含量的测定 氯磺酚S分光光度法(0.01~0.50%)
GB-T 223.41-1985 钢铁及合金化学分析方法 离子交换分离—连苯三酚光度法测定钽量 (0.50~2.00%)
GB-T 223.42-1985 钢铁及合金化学分析方法 离子交换分离—溴邻苯三酚红光度法测定钽量 (0.010~0.50%)
GB-T 223.43-2008 (GB-T 223.44-1985) 钢铁及合金 钨含量的测定 重量法和分光光度法
GB-T 223.45-1994 钢铁及合金化学分析方法 铜试剂分离—二甲苯胺蓝Ⅱ光度法测定镁量 (0.010~0.10%)
GB-T 223.46-1989 钢铁及合金化学分析方法 火焰原子吸收光谱法测定镁量 (0.002~0.100%)
GB-T 223.47-1994 钢铁及合金化学分析方法 载体沉淀—钼蓝光度法测定锑量 (0.0003~0.10%)
GB-T 223.48-1985 钢铁及合金化学分析方法 半二甲酚橙光度法测定铋量 (0.0002~0.010%)
GB-T 223.49-1994 钢铁及合金化学分析方法 萃取分离—偶氮氯膦mA分光光度法测定稀土总量 (0.0010~0.20%)
GB-T 223.50-1994 钢铁及合金化学分析方法 苯基荧光酮-溴化十六烷基三甲基胺直接光度法测定锡量 (0.0050~0.20%)
GB-T 223.51-1987 钢铁及合金化学分析方法 5—Br—PADAP光度法测定锌量 (0.0015~0.005%)
GB-T 223.52-1987 钢铁及合金化学分析方法 盐酸羟胺—碘量法测定硒量 (0.05~1.00%)
GB-T 223.53-1987 钢铁及合金化学分析方法 火焰原子吸收分光光度法测定铜量 (0.005~0.50%)
GB-T 223.54-1987 钢铁及合金化学分析方法 火焰原子吸收分光光度法测定镍量 (0.005~0.50%)
GB-T 223.55-2008 (GB-T 223.56-1987) 钢铁及合金 碲含量的测定 示波极谱法
GB-T 223.57-1987 钢铁及合金化学分析方法 萃取分离—吸附催化极谱法测定镉量 (0.00005~0.010%)
GB-T 223.58-1987 钢铁及合金化学分析方法 亚砷酸钠—亚硝酸钠滴定法测定锰量 (0.10~2.50%)
GB-T 223.59-1987 钢铁及合金化学分析方法 锑磷钼蓝光度法测定磷量 (0.01~0.06%)
GB-T 223.59-2008 钢铁及合金 磷含量的测定铋磷钼蓝分光光度法
GB-T 223.60-1997 钢铁及合金化学分析方法 高氯酸脱水重量法测定硅含量 (0.10~6.00%)
GB-T 223.61-1988 钢铁及合金化学分析方法 磷钼酸铵容量法测定磷量 (0.01~1.0%)
GB-T 223.62-1988 钢铁及合金化学分析方法 乙酸丁酯萃取光度法测定磷量 (0.001~0.05%)
GB-T 223.63-1988 钢铁及合金化学分析方法 高碘酸钠(钾)光度法测定锰量 (0.010~2.00%)
GB-T 223.64-2008 钢铁及合金 锰含量的测定 火焰原子吸收光谱法
GB-T 223.65-1988 钢铁及合金化学分析方法 火焰原子吸收光谱法测定钴量 (0.01~0.5%)
GB-T 223.66-1989 钢铁及合金化学分析方法 硫氰酸盐—盐酸氯丙嗪—三氯甲烷萃取光度法测定钨量 (0.0020~0.100%)
GB-T 223.67-2008 钢铁及合金 硫含量的测定 次甲基蓝分光光度法
GB-T 223.68-1997 钢铁及合金化学分析方法 管式炉内燃烧后碘酸钾滴定法测定硫含量 (0.0030~0.20%)
GB-T 223.69-2008 钢铁及合金 碳含量的测定 管式炉内燃烧后气体容量法
GB-T 223.70-2008 钢铁及合金 铁含量的测定 邻二氮杂菲分光光度法
GB-T 223.71-1997 钢铁及合金化学分析方法 管式炉内燃烧后重量法测定碳含量 (0.10~5.00%)
GB-T 223.72-2008 钢铁及合金 硫含量的测定 重量法
GB-T 223.73-2008 钢铁及合金 铁含量的测定 三氯化钛—重铬酸钾滴定法
GB-T 223.74-1997 钢铁及合金化学分析方法 非化合碳含量的测定 (0.030~5.00%)
GB-T 223.75-2008 钢铁及合金 硼含量的测定 甲醇蒸馏-姜黄素光度法
GB-T 223.76-1994 钢铁及合金化学分析方法 火焰原子吸收光谱法测定钒量 (0.005~1.0%)
GB-T 223.77-1994 钢铁及合金化学分析方法 火焰原子吸收光谱法测定钙量 (0.0005~0.010%)
GB-T 223.78-2000 钢铁及合金化学分析方法 姜黄素直接光度法测定硼含量 (钢0.0005~0.012%) (非合金钢0.0001~0.0005%)
GB-T 223.79-2007 钢铁 多元素含量的测定 X-射线荧光光谱法(常规法)
GB-T 223.80-2007 钢铁及合金 铋和砷含量的测定 氢化物发生-原子荧光光谱法
GB-T 223.81-2007 钢铁及合金 总铝和总硼含量的测定微波消解-电感耦合等离子体质谱法
GB-T 223.82-2007 钢铁 氢含量的测定 惰气脉冲熔融热导法。

㈢ 18.分析方法选择的原则有哪些

案例分析法(Case Analysis Method),又称个案研究法是由哈佛大学于1880年开发完成,后被哈佛商学院用于培养高级经理和管理精英的教育实践,逐渐发展今天的"案例分析法"。哈佛大学的"案例分析法",开始时只是作为一种教育技法用于高级经理人及商业政策的相关教育实践中,后来被许多公司借鉴过来成为用于培养公司企业得力员工的一种重要方法。通过使用这种方法对员工进行培训,能明显地增加员工对公司各项业务的了解,培养员工间良好的人际关系,提高员工解决问题的能力,增加公司的凝聚力。是指结合文献资料对单一对象进行分析,得出事物一般性、普遍性的规律的方法

㈣ 综合分析方法

综合分析方法是以遥感填图方法为主,同时结合地球物理、岩石同位素资料进行综合分析,建立划分填图单元的一种方法。其应用的目的在于使填图单元建立划分的更加准确,地质信息提取的更加丰富,并从不同角度解决填图问题。

(一)遥感填图方法

影像单元法、影像岩石单元和单元-剖面法是贯穿遥感填图全过程的方法技术。运用这些方法是从遥感技术角度解决1∶25 万填图的技术问题,使填图成果精度符合相应的技术规范要求。其解决填图问题的实质是通过研究、分析不同性质地质体的宏观影像分区及微观影像变化规律,进行地质体性质判定和填图单位种类划分及构造信息的提取与类型划分。它们所能够解决的地质问题或地质现象均属于地球表面的直接显示出的信息,即表层信息提取。但对于大量的隐伏地质信息的提取,受其方法技术自身限制难以全面实现,如隐伏断裂和隐伏岩体及花岗岩类侵入体的时代等等。因此,结合其他技术方法的应用,从不同角度,取长补短,丰富地质填图成果,使其更加符合地质作用规律。

(二)地球物理技术方法

该方法是遥感地质填图综合分析研究的首选技术方法。主要通过地球物理资料如航磁、重力处理数据的分析、解释,并根据地质体的磁性特征、密度特征变化规律,着重解决隐伏断裂、隐伏岩体和火山机构的圈定。解决遥感技术和物探技术在1∶25万遥感地质填图应用中解释地质问题的层次和深度。现以内蒙古得尔布干覆盖地区和新疆阿尔金裸露地区为例加以叙述。

1.内蒙古得尔布干地区重磁场特征分析

1)岩石磁性特征分析

通过2000年6~9月,对阿龙山地区进行的岩石磁性测量工作,其中实地测量了岩石露头27处,获得磁化率数据327个;测量岩石标本712块,获得磁化率数据2872个。区内岩石(地层)的磁性特征如下。

(1)变质岩类磁性特征

区内出露的元古宇变质岩岩性为花岗岩片麻岩、黑云斜长变粒岩、片岩及千枚岩、大理岩等。磁测定结果反映出元古宇地层的磁性普遍很弱,磁化率值变化范围在(0~380)×10-5SI,平均值仅为60×10-5SI。

(2)盖层磁性特征

阿龙山地区的盖层主要为一套中生界火山岩地层,该套地层的磁性特征如下。

火山碎屑岩类一般为弱磁性或具有中等磁性。其中凝灰砂岩、层凝灰岩及含角砾凝灰岩的磁性普遍很弱,磁化率的平均值多在(30~65)×10-5SI之间变化;熔结凝灰岩和英安质、粗安质及安山质凝灰岩的磁性多具有中等磁性,磁化率变化范围在(11~1661)×10-5SI之间,最大可达到3890×10-5SI,平均磁化率值为570×10-5SI。

中性—基性火山熔岩一般具有很强的磁性,其中粗安岩的磁化率在(15~3390)×10-5SI之间,平均值为886×10-5SI;英安岩的磁化率变化范围在(0~4000)×10-5SI之间,平均值在(590~3000)×10-5SI之间;安山岩的磁化率值范围在(1228~3360)×10-5SI之间,平均值为3012×10-5SI;玄武岩磁化率变化范围在(394~10000)×10-5SI之间,磁化率均值为2281×10-5SI。

(3)侵入岩磁性特征

区内花岗岩类的磁性差异较大,其中花岗岩的磁性可分为无磁性花岗岩、弱磁性花岗岩及中等磁性花岗岩。无磁性花岗岩磁化率平均值为40×10-5SI;弱磁性花岗岩平均磁化率为230×10-5SI;中等磁性花岗岩的磁化率变化在(11~1177)×10-5SI之间,磁化率均值为695×10-5SI。花岗斑岩类一般具有中等磁性,磁化率变化范围一般在(19~1311)×10-5SI之间,磁化率均值为545×10-5SI。二长花岗岩和钾长花岗岩的磁化率在(13~3000)×10-5SI之间,磁化率均值为630×10-5SI。因此,除了无磁性的花岗岩外,其他类型的花岗岩类引起的磁异常较难区分。

区内闪长岩类的磁性一般比花岗岩类强度大,其中花岗闪长岩、石英闪长岩的磁化率值范围在(126~3500)×10-5SI之间,平均值为950×10-5SI;闪长玢岩的平均磁化率达1286×10-5SI;闪长岩的磁化率值范围在(614~6300)×10-5SI之间,磁化率平均值可达1900×10-5SI。

2)岩石密度特征分析

阿龙山地区岩石及地层密度变化具有以下特征:

(1)随着地层的时代由新至老岩石的密度值逐渐增大;

(2)中生界侏罗系火山熔岩地层的岩石密度值比正常碎屑岩类的岩石密度值大;

(3)下古生界与元古宇的岩石密度值基本相同,中性、酸性侵入岩体的岩石密度则介于侏罗系火山熔岩地层与前中生界(包括下古生界和元古宇)之间,其密度差值约在±0.15 g/cm3左右。因此,该地区区域性密度界面是前中生界和中、酸性侵入岩构成的岩石界面,该区域性密度界面与上覆盖层之间存在着0.2~0.7 g/cm3密度差;侏罗系火山熔岩与正常碎屑岩是区内的局部密度界面。其间存在0.5 g/cm3密度差(表2-4)。

表2-4 阿龙山及周边地区岩石密度统计表

3)重磁场特征及解释

阿龙山地区的航磁资料测量比例尺大,飞行高度低,测量精度高,编绘出的ΔT磁场图件包含的各类地质信息非常丰富。

根据已知地质资料与岩石物性资料对比分析结果,得出如下结论:

(1)阿龙山地区海西期花岗岩与下古生界和元古宇构成了该地区重要的区性岩石磁性界面及岩石密度界面。中元古界和下古生界磁性很弱,仅海西期花岗斑岩和二长花岗岩及花岗闪长岩、闪长岩具有中等与较强的磁性。

(2)阿龙山地区区域背景磁场的特征及分布,主要反映区域磁性界面强弱变化与分布特点,降低的负磁场区为下古生界、元古宇及弱磁性的海西期花岗岩分布区;升高的正背景磁异常区则为具磁性的海西期中、酸性侵入岩分布区。

(3)航磁局部磁异常一般是花岗闪长岩、闪长岩和中、基性火山熔岩及浅成次火山岩,如安山玢岩、闪长玢岩、英安岩等引起。其中花岗闪长岩和闪长岩等引起的局部磁异常形态清晰并且强度较大,比较容易辨认。

(4)由于火山岩(主要是熔结凝灰岩和中、基性火山熔岩)和浅成次火山岩很不均匀,它们所引起的磁异常在形态和强度变化方面都较大,其分布特点一般呈带状、环状及片状分布。

(5)不同时代岩石、地层的密度变化具有十分明显的规律性,构成该地区区域性密度界面的元古宇、下古生界及海西期侵入岩体与中生界地层之间存在着0.2~0.7 g/cm3密度差。因此,阿龙山地区布格重力图中局部重力异常场的高、低变化应是主密度界面起伏变化或侏罗纪中、基性火山岩的客观反映。

4)磁场特征及分区

阿龙山地区的磁场特征及变化十分复杂,为了便于对磁场和磁异常的分类及研究,依据该地区的区域背景磁场及磁异常的性质、形态、强度及梯度变化,以及它们之间的组合分布特点等,划分为三类:

(1)独立正磁异常及编号

HA-Ⅰ:该类磁异常的形态呈等轴状或似等轴状,有些异常具有一定的延伸及走向。异常形态规整,强度一般大于500 nT,面积一般大于2.0 km2

HA-Ⅱ:该类磁异常的形态特征与前述磁异常相同,但磁异常的强度比前者弱,异常的强度一般在200~500 nT之间。

推断上述磁异常主要是由具磁性的中、酸性侵入岩体引起,对岩体范围的圈定起参考作用。

(2)正背景磁场的分区及编号

a.HB类磁场区特征及编号

该类磁异常的明显特点是强度较大,一般在200~500 nT之间。依据磁异常的形态特征、发育程度及组合分布特点,划分出3个磁场小区:

HB-Ⅰ:小区内磁异常发育,磁异常的形态以似二度异常为主,即单个磁异常具有明显的延伸及走向,并且没有明显的负值伴生。

HB-Ⅱ:小区内磁异常的形态及强度特征与前述小区相类似,主要差别仅仅是局部磁异常的发育程度比前者差一些。

HB-Ⅲ:小区内磁异常的形态与强度变化比较复杂,既存在着等轴状及似等轴状异常,同时也发育有二度及似二度异常,并且局部磁异常存在着明显的伴生负值。

b.HC类磁场区特征及编号

该类磁场小区内磁异常形态特征与HB类小区基本相同,它们之间的显着差异主要反映在磁异常的强度方面,该类磁场小区内的磁异常强度变化在100~250 nT之间。

HC-Ⅰ:区内磁异常形态以二度和似二度异常为主,异常发育,强度在 100~250 nT之间。

HC-Ⅱ:小区内磁异常形态多以等轴状和似等轴状异常为主,并存在着明显的伴生负值,异常强度一般在100~250 nT之间。

HC-Ⅲ:小区内局部异常较发育,但磁异常的强度比 HC-Ⅱ磁场小区磁异常弱,磁异常强度变化在50~100 nT之间。

HC-Ⅳ:小区内局部磁异常不发育,区内正磁场变化平缓单调,强度在50~100 nT左右。

该类磁场小区主要反映的是中、基性火山熔岩及次火山岩类的变化与分布特点,可对填图单位组、段划分对比起到参考作用。

(3)负背景磁场分区及编号

a.LA类磁场小区特征及编号

该类磁场小区内局部磁异常发育程度及变化较大,负背景磁场变化平缓,磁场值在-50~-150 nT之间。

LA-Ⅰ:小区内的局部磁异常不发育,负背景磁变化平缓、单调,磁场强度在 0~-100 nT之间。

LA-Ⅱ:小区的负背景磁场强度变化在 0~-100 nT之间,局部磁异常较前磁场小区发育,但局部异常强度较弱,异常幅值变化在50~100 nT之间。

LA-Ⅲ:小区内背景磁场变化在-50~-150 nT之间,局部异常发育,异常的幅值变化一般在50~200 nT之间。

LA-Ⅳ:小区内背景磁场强度变化在-100~-150 nT之间,局部磁异常发育且强度较大,异常幅值变化一般在200~500 nT之间。

b.LB类磁场小区特征及编号

与LA类磁场小区相比较,LB类磁场小区的主要特点是背景磁场强度明显偏弱,背景磁场强度值一般在-200 nT以上。结合该类磁场区内局部异常发育程度及特征,可分为如下次级小区。

LB-Ⅰ:小区内的背景磁场强度在-200~-250 nT之间,其变化特征平缓、单调,区内局部异常不发育。

LB-Ⅱ:小区内背景磁场强度可达-300 nT以上,局部磁异常较发育,异常幅值变化在50~150 nT之间变化。

LB-Ⅲ:小区内背景磁场强度变化在-150~-250 nT之间。局部磁异常发育,其幅值变化在100~250 nT之间,并存在着明显的伴生负值。

该类磁场小区主要反映的是火山碎屑岩类夹沉积岩分布特点。其中小区内不同强度的局部异常则反映了次火山岩的存在及发育状况,可为填图单位、岩石大类划分提供参考作用。

5)断裂构造及重、磁异常特征

断裂构造在重、磁场图中反映出的标志特征十分明显,它们反映出的重、磁场标志特征主要有:不同性质重、磁场区及不同特征重、磁异常区之分界线;重、磁场线性梯度带;线性重、磁异常带或串珠状线性重、磁异常带;串珠状线性重、磁异常带和重、磁异常带之错动或扭动线等。

6)侏罗系地层厚度及分布特征

通过前面岩石、矿物的磁性特征分析可知,阿龙山地区的前中生界是该地区的区域性岩石密度界面,它与上覆侏罗系之间存在着0.2~0.7 g/cm3的密度差。因此,局部重力场的变化主要反映了区域性密度界面起伏及侏罗系地厚的厚度变化等信息,局部重力高一般是基岩隆起或凸起的反映,局部重力低则反映出基岩凹陷的分布特点。据此,通过对重力局部异常进行深度计算并结合已知地质资料,编制出阿龙山地区侏罗系地层厚度分布图。由于使用的重力资料比例尺小、精度低,深度计算误差可能在±20.0%左右。

阿龙山地区侏罗系的厚度变化及分布特点反映基岩起伏变化呈现出凹隆相间分布的构造格局,其宏观走向呈北东向展布。即阿南-阿北林场凹陷,秀山-汗马基站隆起,乌力依特林场-防火站凹陷。阿南-阿北林场凹陷的沉积中心位于阿北林场附近,侏罗系地层厚度可达1.5 km,向南有逐渐减薄的趋势;乌力依特林场-防火站凹陷存在着两个沉积中心,即乌力依特林场沉积中心和防火站沉积中心,沉积中心内侏罗系地层的厚度可达2.0 km,在两沉积中心之间被一个次级基岩凸起隔开。此外,在约安里林场和源江林场等处,还分别存在着两个侏罗系地层厚度达2.0 km和1.5 km的沉积中心。

7)火山机构群及分布特征

阿龙山地区侏罗系火山岩地层分布广、厚度大,说明该地区在中生代时期曾发生过强烈的岩浆喷溢活动,火山机构广泛发育。我们知道,在岩浆喷溢过程中靠近火山口处不但堆积了巨厚的火山熔岩,而且也是次火山岩比较集中发育的地段,这就为利用航磁圈定火山机构提供了可靠的地质前提条件。岩石磁性测定结果证明,阿龙山地区的火山熔岩和次火山岩一般都具有较强的磁性,具备了利用航磁圈定火山机构的地球物理前提条件。航磁资料结合已知地质资料分析对比结果表明,火山机构在磁场上具有明显的磁异常反映,一般中心喷发式的火山机构引起的磁异常形态呈等轴状或似等轴状,既有正磁异常也有(因近体磁化原因引起的)负磁异常;裂隙溢出式的火山机构引起的磁异常形态多呈二度磁异常及磁异常带。磁异常的强度及大小主要与火山熔岩及次火山岩的磁性强弱及规模大小有关,一般中、基性火山熔岩及安山玢岩、辉长、辉绿玢岩、闪长玢岩等引起的磁异常强度较大,中、酸性火山熔岩及英安岩引起的磁异常相对较弱。上述与火山机构有关的磁异常在阿龙山地区一般呈带状或片状群出现,为我们研究分析该地区火山机构群类型及分布提供了重要依据。

依据火山机构群表现出的磁场特征在阿龙山工区共圈定出火山机构群22处。区内火山机构群的规模大小及分布具有以下特点:以内蒙古得尔布干断裂为界其北侧的火山机构群规模一般较小,并且具有明显的延伸及走向,反映出火山机构明显地受断裂所控制。另外,各火山机构群内单个火山机构反映出的磁异常形态主要是以等轴状或似等轴状异常为主,说明得尔布干断裂西北侧的火山活动主要是以中心喷发式为主。分布在得尔布干断裂东南侧的火山机构群规模一般较大,其形态多为片状,各火山机构群内单个火山机构的磁异常形态变化比较复杂,既存在着等轴状及似等轴状磁异常,也存在着具有一定延伸和走向的二度磁异常及磁异常带,反映出得尔布干断裂东南侧火山活动形式既存在着中心喷发式,同时也存在着裂隙溢出式的岩浆活动,而且次火山岩比较发育。说明在得尔布干断裂东南侧火山机构非常发育,岩浆的喷、溢活动强烈。

重力资料反映,区内的火山机构群主要分布在重力高异常(或异常带)与重力低异常(或异常带)的转换部位,上述部位恰是基底断裂所通过的位置。

2.新疆阿尔金地区磁场特征分析

由于阿尔金山地区只有1∶50 万航磁资料,受其精度所限,对该地区的研究,设想从区域性航磁磁场分区、区域磁场和局部异常分析三个方面入手,解决沉积岩地层,沉积-火成岩地层、变质岩地层、花岗岩类侵入体的空间分布与宏观影像岩石单元间的关系;解决构造轮廓及区域构造格架,以及隐伏岩体与单元的关系。具体分析内容及方法如下:

1)岩石磁性特征

区内基性、超基性侵入体具有很强的磁性,因此该类侵入体一般可以引起较强的磁异常。经过与已知地质资料分析对比,阿尔金山地区不同时代的基性或超基性岩体均有明显的磁异常反映。如出露在研究区内的石棉矿(东经88°30′、北纬38°20′)超基性岩体、辉长岩体(东经87°10′、北纬38°05′;东经88°25′、北纬38°10′)都存在着明显的局部磁异常与之对应。受基性、超基性岩体规模的限制,该类岩体所引起的磁异常规模及强度变化较大,其形态一般呈等轴状或似轴状,强度一般在150~200 nT,最大可达500 nT以上(茫崖镇岩体)。

中、酸性侵入体引起的磁异常一般呈等轴状或似等轴状,异常的规模一般比基性、超基性岩体引起的磁异常规模大,强度一般在100~200 nT。

由火山岩引起的磁异常形态一般具有二度异常及线状异常带特征,说明区内火山分布受断裂控制。

2)磁场分区及地质解析

依据瓦石峡幅航磁ΔT磁场图中区域磁场表现出的(正、负)外貌特征及强度、梯度变化,以及次级叠加磁异常的形态特征与发育程度,将该区划分为如下4个次级磁场小区。

Ⅰ宽缓变化负磁场区;

Ⅱ宽缓变化正、负磁场区;

Ⅲ叠加局部磁异常的负磁场区;

Ⅳ条带状正、负变化磁场区。

岩石磁性资料结合地质资料分析结果表明,阿尔金山地区存在着两个十分明显的磁性界面。其中区内的太古宇—元古宇变质基底构成了该地区的区域性磁性界面,该磁性界面所引起的区域背景磁场具有较好的稳定性和连续性。区内另外一个磁性界面则是由不同时期的岩浆侵入体或火山岩等所构成的局部磁性界面,由于该磁性界面的稳定性与连续性都很差,因此它们所引起的磁(场)异常一般表现出很大的差异与离散性。上述局部磁性界面所产生的形态各异和强度多变的磁异常叠加分布在区域背景磁场中,这样就使得磁场的形态及外貌特征变得复杂起来。

阿尔金山地区太古宙中的强磁性变质岩主要是由正变质岩构成,其原岩主要为中、基性的岩浆岩类;太古宙副变质岩一般具有弱磁性或不具磁性。阿尔金山地区元古宇地层中也分布有具有磁性的变质岩系,但其磁性强度要比太古宇中的强磁性变质岩弱很多,说明以上两类变质岩在原岩性质及物质成分上存在着较大差别,推断具有中等磁性的元古宇变质岩类其原岩多为中、酸性岩浆岩,或者是在变质过程中混入了中、酸性岩浆岩成分。因此,阿尔金山(瓦石峡地区区域背景磁场特征及分布主要是揭示出了该地区结晶基底的岩性,即基底岩相变化。升高的正磁场和强度很大的正背景磁异常分布区反映为强磁性正变质岩分布区;降低的负磁场区则为副变质岩(Ⅰ:宽缓变化负磁场区,Ⅲ:叠加局部磁异常的负磁场区)分布区;在降低的负磁场中所显示出的升高磁场区(Ⅳ:条带状正、负变化磁场区)为中等磁性变质岩分布区。叠加在区域背景磁场中的局部磁异常或磁异常带主要是不同时期的岩浆侵入体和火山岩的反映,它们的分布特点及发育程度揭示出了瓦石峡地区在断裂及岩浆活动方面存在的差异。例如在Ⅰ、Ⅱ号磁场小区内的局部磁异常很不发育,说明瓦石峡幅西北部的岩浆活动特别是海西运动以来的岩浆活动对该地区的影响甚微;在Ⅲ磁场小区可以看到局部异常较发育,局部异常的形态一般为等轴状或似等轴状,磁异常的强度一般也比较弱。推断该磁场小区内的局部异常主要为中、酸性侵入体引起,反映出Ⅲ号磁场小区的岩浆活动方式是以侵入活动为主;Ⅳ号磁场小区内的局部异常非常发育,并且异常的强度及形态变化也表现得十分复杂,揭示出该小区的岩浆活动比较强烈、频繁,不同时期的岩浆成分及性质差异较大,并且岩浆活动方式也十分复杂,既存在着岩浆侵入活动,同时也存在着规模较大的岩浆喷溢活动。所以,瓦石峡研究区的磁场特征及分布,深刻地揭示出了该地区的基底结构与岩相分布特征,以及岩浆活动特点等情况。

3)基底断裂及特征

研究结果证明,断裂在磁场上一般具有以下几种标志特征:

(1)不同性质(正、负)磁场区及不同形态磁异常区分界线;

(2)磁场线性梯度带;

(3)线性正(或负)磁异常带及串珠状线性磁异常带;

(4)磁场与磁异常带的错(或扭)动带。

断裂在磁场上所表现出的上述特征标志对我们分析、判断断裂规模及性质具有十分重要的意义。其标志特征表现为不同性质磁场区或不同形态磁异常区分界线的断裂,不但对基底结构及岩相分布具有控制作用,而且反映断裂两侧的岩浆活动也具有较大差异,说明断裂的规模大并对区域地质发展及构造演化起到控制作用;反映为线性磁异常带或串珠状线性异常带等磁场标志特征的断裂,则说明沿着断裂有岩浆侵入体和火山岩分布,揭示出该类断裂一般切割的深度大,对岩浆活动具有控制作用;表现出磁场或线性磁异常带的错动带标志特征的断裂,则为我们提供了断裂两侧曾发生过相对运动的有关信息。

总之,断裂在磁场上所表现出的特征标志是比较复杂的,它可以表现出一种磁场标志特征,也可以同时反映出两种或两种以上的标志特征。

3.遥感与航磁成果吻合性影响因素分析

遥感地质解译与航磁解释成果经常表现出诸多的不一致性,主要表现在同一地质体的形态、位态的不同。究其原因表现在以下几个方面:

1)遥感和航磁资料的多解性

地质体在特定条件下会存在异物同(光)谱(或同谱异物)和位场等效效应现象,这是造成遥感及航磁解译(释)结果呈现出非惟一性,即多解性的原因。多解性现象的存在不但增大了资料解释的工作量与难度,而且还可能会造成解释结果中某些不确定因素同时增多。遥感和航磁成果中存在着的不确定因素往往会对两者成果之间的对比分析造成困难,并对成果的吻合性产生明显的影响,因此,遥感与航磁技术方法本身及成果中所存在的多解性问题,往往是引起两者的解释成果在吻合性(一致性)方面存在差别的主要影响因素之一。

2)成果解译(释)理论、方法方面存在的差异

遥感与航磁的成果解译(释)理论和方法方面存在的差别及其对成果吻合性影响包括两个方面:

(1)研究及实践结果证明,依据解译(释)理论及方法所获得的遥感与航磁成果在没有得到野外检查验证之前都是推断性成果。因此,解译(释)成果本身与实际情况之间所存在的不确定性,将会影响到遥感与航磁成果的吻合性(一致性)。

(2)目前正在广泛使用的遥感与航磁的成果解译(释)理论和方法是一套各自完全独立的工作系统,两者之间不存在任何的内在联系。遥感技术具有直观性和可视性等特点,有利于资料的对比分析,这样就使得遥感解译成果中的推断性成分较少。相比之下,航磁资料解释,特别是在对磁异常进行定量解释过程中,必须给出磁化强度的大小、方向及磁性体的形状等参数,而上述参数在一般情况下都是通过试验及分析对比或是逻辑推理方法确定的,造成航磁成果中的推断分析成分所占的比重相对较大。因此,遥感与航磁的成果解译(释)方法之间存在的差异,是影响遥感与航磁成果吻合性的主要因素之一。

3)地质体的复杂性

地表所保留的地质体是长期、复杂地质作用的结果。它们对遥感与航磁成果吻合性的影响及其产生的原因主要与技术方法本身的特点有关。研究及分析结果表明,对于复杂的地质及构造现象,不同的技术方法一般只能够揭示出它们的某一个侧面。例如,对一条深大断裂,遥感资料可以依据断裂显示的地形、地貌特征、色调和影纹等的差异,可以很直观地揭示出该断裂在地表的位置及延伸方向。而航磁则是依据断裂磁场特点(多反映为线性磁异常带或串珠状线性磁异常带)来判断出断裂的延深及展布。由于受断裂控制的磁性体(一般为岩浆岩类)的分布情况比较复杂,它们的宏观展布方向虽然与断裂的走向一致,但它们并不一定在断裂之中,而是往往沿着断裂带及其两侧排列分布,说明航磁资料中还包含有反映断裂的深部信息的成分。从而造成遥感资料反映出的断裂和航磁资料圈定出的断裂在平面位置上存在着一定的偏离现象。因此,宏观地质体的复杂性也是影响遥感与航磁成果吻合性的重要因素之一。

(三)同位素测年资料

同位素测年资料是确定地质体形成时代或年龄的依据。它可通过收集前人资料获取,也可通过同位素样品采集分析获取。无论采用哪种方式收集,均有利于花岗岩类侵入体填图单元年龄和断裂形成年龄的判定。测年方法比较多,有U/Pb法、Rb/Sr法、K/Ar法、40Ar/39Ar法、14C法、电子自旋共振(ESR)法等。

铀-铅法根据238U/206Pb和235U/207Pb衰变进行测年,其样品一般采用晶质铀矿或沥青铀矿、锆石、独居石等。

铷-锶法根据87Rb/87Sr的β衰变进行测年。这种方法可广泛地利用全岩进行测定,除富含铷的矿物外,还可以利用钾长石、云母类矿物和铷含量为10-2%~10-3%的酸性岩。

钾-氩法和氩-氩法测年可以采用的矿物较多。包括钾长石类、云母类、角闪石类、辉石类和海绿石等。

14C法利用炭质粘土岩类和植物等样品进行测年。

在使用上述不同方法测年数据时,应注意数据适用性。

总之,遥感地质解译与航磁地质解释资料的综合分析利用是遥感地质填图成果的丰富、补充与相互验证,由于这两种方法技术揭示地质体层次不同,即遥感以表层地质现象为主,航磁以深部地质结构为主,所以在解释结果利用过程中应视具体情况具体分析。一般情况下,对第四纪覆盖区的隐伏断裂解译及利用局部异常圈定隐伏侵入岩体,航磁解释优于遥感解译结果,图面地质内容应以航磁解译结果为主体。但对于填图单元解译划分,裸露区断裂解译,应以遥感技术为主体,充分发挥其直观、宏观技术特性。而航磁ΔT异常分区分析与遥感宏观影像单元分区具有相应的结合性,可通过磁场分区强度判定岩类范围。对同位测年数据主要与影像岩石单元结合,采用定位对比或直接使用以确保单元建立划分合理,序列归并准确。

怎么根据以往号码用概率分析方法推算下期可能号码呢例如,彩票.

科学的看来,以往开出的号码和即将开出的号码是“互不相干”的事件,所以这个不能用概率分析.
概率分析认为,除非条件不同,譬如红蓝球,否则,各个号码出现的可能概率是一样的.

㈥ 数据分析的分析方法有哪些

数据分析的分析方法有:

1、列表法

将数据按一定规律用列表方式表达出来,是记录和处理最常用的方法。表格的设计要求对应关系清楚,简单明了,有利于发现相关量之间的相关关系;此外还要求在标题栏中注明各个量的名称、符号、数量级和单位等:根据需要还可以列出除原始数据以外的计算栏目和统计栏目等。

2、作图法

作图法可以最醒目地表达各个物理量间的变化关系。从图线上可以简便求出实验需要的某些结果,还可以把某些复杂的函数关系,通过一定的变换用图形表示出来。

图表和图形的生成方式主要有两种:手动制表和用程序自动生成,其中用程序制表是通过相应的软件,例如SPSS、Excel、MATLAB等。将调查的数据输入程序中,通过对这些软件进行操作,得出最后结果,结果可以用图表或者图形的方式表现出来。

图形和图表可以直接反映出调研结果,这样大大节省了设计师的时间,帮助设计者们更好地分析和预测市场所需要的产品,为进一步的设计做铺垫。同时这些分析形式也运用在产品销售统计中,这样可以直观地给出最近的产品销售情况,并可以及时地分析和预测未来的市场销售情况等。所以数据分析法在工业设计中运用非常广泛,而且是极为重要的。

(6)分析方法号扩展阅读:

数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,将它们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。

数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。

㈦ 电路分析的基本方法正负符号怎么判断

正负号表示与规定的参考方向相同还是相反,相同为正,相反为负。
参考方向是人为规定的,因此电路中的所谓正负也是人为规定的。

解题时以题目规定的参考方向为准,自己设计电路时参考方向可随意规定,一般以多数电源或电压最高的电源的方向为正方向。

对于交流信号的方向一般习惯以输入信号的方向为参考方向,也可以任意指定。

㈧ 数据分析方法有哪些

常用的数据分析方法有:聚类分析、因子分析、相关分析、对应分析、回归分析、方差分析。

1、聚类分析(Cluster Analysis)

聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。

2、因子分析(Factor Analysis)

因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。

3、相关分析(Correlation Analysis)

相关分析(correlation analysis),相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度。

4、对应分析(Correspondence Analysis)

对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。

5、回归分析

研究一个随机变量Y对另一个(X)或一组(X1,X2,?,Xk)变量的相依关系的统计分析方法。回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。

6、方差分析(ANOVA/Analysis of Variance)

又称“变异数分析”或“F检验”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显着性检验。由于各种因素的影响,研究所得的数据呈现波动状。

想了解更多关于数据分析的信息,推荐到CDA数据认证中心看看,CDA(Certified Data Analyst),即“CDA 数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的专业权威国际资格认证, 旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。 “CDA 数据分析师”具体指在互联网、金融、零售、咨询、电信、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、 提供决策的新型数据分析人才。

阅读全文

与分析方法号相关的资料

热点内容
测玻璃裂痕用什么方法 浏览:895
正确歌唱发声方法 浏览:309
磁石补铁最佳方法 浏览:393
烤鸽子的腌制方法视频 浏览:344
班主任管理的技巧和方法教资 浏览:900
14天不出屋锻炼方法 浏览:858
三极管电路分析方法 浏览:945
卵巢早衰怎么办调理方法 浏览:677
怎么样制作灯笼的方法 浏览:537
避孕套女孩使用方法 浏览:179
除皱纹好方法是什么 浏览:217
灰脚甲炎治疗方法 浏览:545
问题情景解决方法循环 浏览:108
切菜左手后退方法图片 浏览:403
港中华真假烟的快速鉴别方法 浏览:939
最简单的去污垢的方法 浏览:436
lamysafari使用方法 浏览:813
阳光减肥法的正确方法 浏览:327
肩颈疼痛的原因和解决方法 浏览:969
石榴种植不甜的方法 浏览:326