㈠ 求函数解析式的四种常用方法
求函数解析式的四种常用方法有:配凑法、换元法、待定系数法、 消元法。
㈡ 求函数表达式的方法有哪几种
函数表达式的方法有:
1,解析式,将函数的因变量和自变量的关系用数学公式的方法表达
2,列表法,将函数的因变量和自变量的关系用列表的方法表达。
3,图象法,将函数的因变量和自变量的关系在直角坐标系中用图象的方法表达。
㈢ 求解函数解析式的几种方法及例题
重难点归纳
求解函数解析式的几种常用方法主要有
1待定系数法,如果已知函数解析式的构造时,用待定系数法;
2换元法或配凑法,已知复合函数f[g(x)]的表达式可用换元法,当表达式较简单时也可用配凑法;
3消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f(x);
另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法
典型题例示范讲解
例1(1)已知函数f(x)满足f(logax)=(其中a0,a≠1,x0),求f(x)的表达式
(2)已知二次函数f(x)=ax2+bx+c满足|f(1)|=|f(-1)|=|f(0)|=1,求�f(x)�的表达式
命题意图本题主要考查函数概念中的三要素定义域、值域和对应法则,以及计算能力和综合运用知识的能力
知识依托利用函数基础知识,特别是对“f”的理解,用好等价转化,注意定义域
错解分析本题对思维能力要求较高,对定义域的考查、等价转化易出错
技巧与方法(1)用换元法;(2)用待定系数法
解(1)令t=logax(a1,t0;0<a<1,t<0),则x=at
因此f(t)=(at-a-t)
∴f(x)=(ax-a-x)(a1,x0;0<a<1,x<0)
(2)由f(1)=a+b+c,f(-1)=a-b+c,f(0)=c得并且f(1)、f(-1)、f(0)不能同时等于1或-1,
所以所求函数为
f(x)=2x2-1或f(x)=-2x2+1或f(x)=-x2-x+1
或f(x)=x2-x-1或f(x)=-x2+x+1或f(x)=x2+x-1
例2设f(x)为定义在R上的偶函数,当x≤-1时,y=f(x)的图象是经过点(-2,0),斜率为1的射线,又在y=f(x)的图象中有一部分是顶点在(0,2),且过点(-1,1)的一段抛物线,试写出函数f(x)的表达式,并在图中作出其图象
命题意图本题主要考查函数基本知识、抛物线、射线的基本概念及其图象的作法,对分段函数的分析需要较强的思维能力因此,分段函数是今后高考的热点题型
知识依托函数的奇偶性是桥梁,分类讨论是关键,待定系数求出曲线方程是主线
错解分析本题对思维能力要求很高,分类讨论、综合运用知识易发生混乱技巧与方法合理进行分类,并运用待定系数法求函数表达式解(1)
满意请采纳。
㈣ 函数的表示法有哪些
函数的表示方法有,解析式法、列表法、图像法,此外还有语言叙述法。
解析式法
用含有数学关系的等式来表示两个变量之间的函数关系的方法叫做解析式法。这种方法的优点是能简明、准确、清楚地表示出函数与自变量之间的数量关系;缺点是求对应值时往往要经过较复杂的运算,而且在实际问题中有的函数关系不一定能用表达式表示出来。
列表法
用列表的方法来表示两个变量之间函数关系的方法叫做列表法。这种方法的优点是通过表格中已知自变量的值,可以直接读出与之对应的函数值;缺点是只能列出部分对应值,难以反映函数的全貌。
图像法
把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。这种表示函数关系的方法叫做图象法。这种方法的优点是通过函数图象可以直观、形象地把函数关系表示出来;缺点是从图象观察得到的数量关系是近似的。
语言叙述法
使用语言文字来描述函数的关系。
㈤ 求解函数解析式的方法
函数解析式可以使用待定系数法和换元法等方法来解答。在己知函数解析式的构造时,可用待定系数法。已知复合函数的表达式时,还可以用换元法求f(x)的解析式,换元法与配凑法一样,要注意所换元的定义域的变化。
函数解析式的求法
函数与函数解析式是完全不同的两个概念,函数解析式与函数式相类似都是求出函数x与y的函数关系,在一次函数中就是求K值也就是它俩的关系。
函数是指两个变量A与B之间,如果A随着B的每个值,都有唯一确定的值与之对应,那么A就是B的函数。从对应角度理解,有两种形式,一种是一对一,就是一个B值对应一个A值,反之,一个A值也对应一个B值(当然,此时B也是A的函数)。另一种是一对多,就是多个B值对应一个A值。(此时一个A值对应多个B值,所以B不是A的函数)。
而函数解析式中的函数主要有三种表达方式,分别是列表、图象、解析式(较常用)。因此函数解析式只是函数的一种表达方式。
在已知函数解析式的构造时,可用待定系数法。
例题1、 设 f(x)是一次函数,且 f [ f(x)] = 4x + 3 ,求 f(x)的解析式。
解:设 f(x)= ax + b (a ≠ 0),则
例题1图(1)
例题1图(2)
∴ f(x)= 2x + 1 或 f(x)= -2x - 3
二、 配凑法:
已知复合函数 f [ g(x)] 的表达式,求 f(x)的解析式, f [ g(x)] 的表达式容易配成 g(x)的运算形式时,常用配凑法。
但要注意所求函数 f(x)的定义域不是原复合函数的定义域,而是 g(x)的值域。
例题2、
例题2图(1)
求 f(x)的解析式 。
解:
例题2图(2)
三、换元法:
已知复合函数 f [ g(x)] 的表达式时,还可以用换元法求 f(x)的解析式。
与配凑法一样,要注意所换元的定义域的变化。
求已知函数关于某点或者某条直线的对称函数时,一般用代入法。
若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。
当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。