⑴ 主成分分析(PCA)
主成分分析(PCA)是一种常用的无监督学习方法,这一方法利用正交变换把由现行相关变量表示的观测数据转化为少数几个由线性无关变量表示的数据,线性无关的变量称为主成分。主成分的个数通常小于原始变量的个数,所以主成分分析属于姜维方法。主成分分析主要用于发现数据中的基本结构,即数据中变量之间的关系,是数据分析的有力工具,也用于其他机器学习方法的前处理。
统计分析比中,数据的变量之间可能存在相关性,以致增加了分析的难度。于是,考虑由少数几个不相关的变量来代替相关的变量,用来表示数据,并且要求能够保留数据中的不部分信息。
主成分分析中,首先对给定数据进行规范化,使得数据每一变量的平均值为0,方差为1,。之后对数据进行正交变换,用来由线性相关表示的数据,通过正交变换变成若干个线性无关的新变量表示的数据。新变量是可能的正交变换中变量的方差和(信息保存)最大的,方差表示在新变量上信息的大小。将新变量一次成为第一主成分,第二主成分等。通过主成分分析,可以利用主成分近似地表示原始数据,这可理解为发现数据的“基本结构”;也可以把数据由少数主成分表示,这可理解为对数据降维。
方差最大的解释。假设有两个变量 ,三个样本点A,B,C。样本分布在由 轴组成的坐标系中,对坐标系进行旋转变换,得到新的坐标轴 ,表示新的变量 。坐标值的平方和 表示样本在变量 上的方差和。主成分分析旨在选取正交变换中方差最大的变量,作为第一主成分,也是是旋转变换中坐标值的平方和最大的轴。注意到旋转变换中变换中样本点到原点距离的平方和 不变,根据勾股定理,坐标值的平方和最大 等价于样本点到 轴的距离平方和 最小。所以,等价地,主成分分析在旋转变换中选取离样本点的距离的平方和最小的轴,作为第一主成分。第二主成分等的选取,在保证与已有坐标轴正交的条件下,类似地进行
假设 是m维随机变量,其均值是
,
协方差矩阵是
考虑到m维随机变量 到m维随机变量 的线性变换
其中
由随机变量的性质可知
总体主成分的定义 给定式(1)所示的线性变换,如果他们满足下列条件
设 是m维随机变量, 是 的协方差矩阵, 的特征值分别是 ,特征值对应的单位特征向量分别是 ,则 的第k主成分是
的第k主成分的方差是
即协方差矩阵 的第k个特征值
首先求 的第一主成分 ,即求系数向量 。第一主成分的 是在 的条件下, 的所有线性变换中使方差达到最大的
求第一主成分就是求解最优化问题
定义拉格朗日函数
其中 是拉格朗日乘子,将拉格朗日函数对 求导,并令其为0,得
因此 是 的特征值, 是对应的单位特征向量。于是目标函数
假设 是 的最大特征值 对应的单位特征向量,显然 与 是最优化问题的解,所以, 构成第一主成分,其方差等于协方差矩阵的最大特征值
接着求 的第二主成分 ,第二主成分的 是在 且 与 不相关条件下, 的所有线性变换中使达到最大
求第二主成分需参求解约束最优化问题
定义拉格朗日函数
其中 对应拉格朗日乘子。对 求偏导,并令其为0,得
将方程左则乘以 有
此式前两项为0,且 ,导出 ,因此式成为
由此, 是 的特征值, 是对应的特征向量,于是目标函数为
假设 是 的第二大特征值 的特征向量,显然 是以上最优化问题的解。于是 构成第二主成分,其方差等于协方差矩阵的第二大特征值,
按照上述方法可以求得第一、第二、直到第m个主成分,其系数向量 分别是 的第一、第二、直到m个单位特征向量, 分别是对应的特征值。并且,第k主成分的方差等于 的第k个特征值。
主成分分析的主要目的是降维,所以一般选择 个主成分(线性无观变量),使问题得以简化,并能保留原有变量的大部分信息。这里所说的信息是指原有信息的方差。
对任意正整数 ,考虑正交线性变换
其中 是q的维向量, 是q*m维矩阵,令 的协方差矩阵为
则 的迹 在 时取最大值,其中矩阵 是由正交矩阵A的前q列组成。
这表明,当 的线性变换 在 时,其协方差矩阵 的迹 取得最大值。也就是说,当A取前 的前q个主成分时,能够最大限度地保留原有变量方差的信息。
以上作为选择k个主成分的理论依据。具体选择k的方法,通常利用方差贡献率。
第k主成分 的方差贡献率定义为 的方差与所有方差之和的比记作
k个主成分 的累计方差贡献率定义为k个方差之和和所有方差之和的比
通常取k使得累计方差贡献率达到规定的百分比以上,例如70%~80%。累计方差贡献率反映了主成分保留信息的比例,但它不能反映对某个原有变量 保留信息的比例,这时通常利用k个主成分 对原有变量 的贡献率。
k个主成分 对原有变量 的贡献率为 , 的相关系数的平方,记作
计算公式如下:
其中, 是随机变量 的方差,即协方差矩阵 的对角元素。
在实际问题中,不同变量可能有不同的量纲,直接求主成分有时会产生不合理的结果,为了消除这个影响,常常对各个随机变量实施规范化,使其均值为0,方差为1
设 为随机变量, 为第i个随机变量, ,令
其中, 分布是随机变量 的均值和方差,这时 就是 的规范化随机变量。
在实际问题中,需要在观测数据上进行主成分分析,这就是样本主成分分析。样本主成分也和总体主成分具体相同的性质。
使用样本主成分时,一般假设样本数据是规范化的,即对样本矩阵如下操作:
其中
样本协方差矩阵S是中体协方差矩阵 的无偏估计,样本相关矩阵R是总体相关矩阵的无偏估计,S的特征值和特征向量 的特征值和特征向量的无偏估计。
传统的主成分分析通过数据的协方差矩阵或相关矩阵的特征值分解进行,现在常用的方法是通过数据矩阵的奇异值分解进行。下面介绍数据的协方差矩阵或相关矩阵的分解方法
给定样本矩阵 ,利用数据的样本的协方差矩阵或样本相关矩阵的特征值分解进行主成分分析
给定样本矩阵 ,利用数据矩阵奇异值分解进行主成分分析,这里没有假设k个主成分
对于 维实矩阵A,假设其秩为r, ,则可将矩阵A进行截断奇异值分解
式 是 矩阵, 是k阶对角矩阵, 分别由取A的完全奇异分解的矩阵U,V的前k列, 由完全奇异分解的矩阵 的前k个对角元素得到
定义一个新的 矩阵
的每一列均值为0,
即 等于X的协方差矩阵
主成分分析归结于求协方差矩阵 的特征值和对应的单位特征向量。
假设 的截断奇异值分解为 ,那么V 的列向量就是 的单位向量,因此V的列向量就是X的主成分。于是X求X的主成分可以通过 的奇异值来实现
⑵ pca主成分分析是什么
主成分分析(英语:Principal components analysis,PCA)是一种统计分析、简化数据集的方法。
它利用正交变换来对一系列可能相关的变量的观测值进行线性变换,从而投影为一系列线性不相关变量的值,这些不相关变量称为主成分(Principal Components)。具体地,主成分可以看做一个线性方程,其包含一系列线性系数来指示投影方向。PCA对原始数据的正则化或预处理敏感(相对缩放)。
1、将坐标轴中心移到数据的中心,然后旋转坐标轴,使得数据在C1轴上的方差最大,即全部n个数据个体在该方向上的投影最为分散。意味着更多的信息被保留下来。C1成为第一主成分。
2、C2第二主成分:找一个C2,使得C2与C1的协方差(相关系数)为0,以免与C1信息重叠,并且使数据在该方向的方差尽量最大。
3、以此类推,找到第三主成分,第四主成分……第p个主成分。p个随机变量可以有p个主成分。
主成分分析经常用于减少数据集的维数,同时保留数据集当中对方差贡献最大的特征。这是通过保留低维主成分,忽略高维主成分做到的。这样低维成分往往能够保留住数据的最重要部分。但是,这也不是一定的,要视具体应用而定。由于主成分分析依赖所给数据,所以数据的准确性对分析结果影响很大。
使用统计方法计算PCA
以下是使用统计方法计算PCA的详细说明。但是请注意,如果利用奇异值分解(使用标准的软件)效果会更好。
我们的目标是把一个给定的具有M维的数据集X变换成具有较小维度L的数据集Y。现在要求的就是矩阵Y,Y是矩阵XKarhunen–Loève变换。
⑶ 主成分分析(PCA)原理总结
本文深入解析主成分分析(PCA)的核心原理,涵盖了降维方法、向量投影、矩阵投影、基向量选择及数量确定等关键步骤。
1. 投影概念:向量a在向量b的投影,如图所示,代表a在b方向的信息。当两者正交时,无冗余信息。向量可用基向量e1和e2简洁表示,矩阵投影则对应特征向量。
2. 降维实质:通过向量或矩阵的投影,将高维数据映射到低维空间,如N维向量通过基向量变为M维坐标。
3. 基向量策略:选择基向量的准则在于最小化投影距离和最大化投影方差,如样本数据中,基向量u1能较好地满足这两个标准。
4. 基向量计算:通过最小化样本投影距离或最大化方差,求得基向量矩阵W,其特征向量即为降维的基向量。
5. 自动确定基向量数:通过最大特征值与阈值threshold的关系,确定降维所需基向量的个数。
6. 中心化作用:中心化数据消除平均值影响,简化协方差矩阵计算,确保结果的准确性。
7. PCA流程:包括数据中心化、协方差矩阵计算、特征向量提取、降维数确定、样本映射和新数据集生成。
8. KPCA拓展:对于非线性数据,通过核函数(如径向基函数)将数据映射到高维空间,再进行PCA处理。
总结:PCA作为非监督学习工具,通过简单计算实现降维,但可能牺牲部分信息,影响后续分析。理解并掌握这些原理,有助于高效应用PCA进行数据处理。