导航:首页 > 研究方法 > 主成分分析法的研究方法

主成分分析法的研究方法

发布时间:2024-07-30 21:32:12

❶ 主成分分析法

在对灾毁土地复垦效益进行分析时,会碰到众多因素,各因素间又相互关联,将这些存在相关关系的因素通过数学方法综合成少数几个最终参评因素,使这几个新的因素既包含原来因素的信息又相互独立。简化问题并抓住其本质是分析过程中的关键,主成分分析法可以解决这个难题。

(一)主成分分析的基本原理

主成分分析法(Principal Components Analysis,PCA)是把原来多个变量化为少数几个综合指标的一种统计分析方法。从数学角度来看,这是一种降维处理方法,即通过对原始指标相关矩阵内部结果关系的研究,将原来指标重新组合成一组新的相互独立的指标,并从中选取几个综合指标来反映原始指标的信息。假定有n个评价单元,每个评价单元用m个因素来描述,这样就构成一个n×m阶数据矩阵:

灾害损毁土地复垦

如果记m个因素为 x1,x2,…,xm,它们的综合因素为 z1,z2,…,zp(p≤m),则:

灾害损毁土地复垦

系数lij由下列原则来决定:

(1)zi与zj(i≠j,i,j=1,2,…,p)相互无关;

(2)z1是x1,x2,…,xm的一切线性组合中方差最大者,依此类推。

依据该原则确定的综合变量指标z1,z2,…,zp分别称为原始指标的第1、第2、…、第p个主成分,分析时可只挑选前几个方差最大的主成分。

(二)主成分分析法的步骤

(1)将原始数据进行标准化处理,以消除原始数据在数量级或量纲上的差异。

(2)计算标准化的相关数据矩阵:

灾害损毁土地复垦

(3)用雅克比法求相关系数矩阵R的特征值(λ1,λ2,…,λp)和与之相对应的特征向量 αi=(αi1,αi2,…,αip),i=1,2,…,p。

(4)选择重要的主成分,并写出其表达式。

主成分分析可以得到P个主成分,但是由于各个主成分的方差与其包含的信息量皆是递减的,所以在实际分析时,一般不选取P个主成分,而是根据各个主成分所累计的贡献率的大小来选取前K个主成分,这里的贡献率是指某个主成分的方差在全部方差中所占的比重,实际上也是某个特征值在全部特征值合计中所占的比重。即:

灾害损毁土地复垦

这说明,主成分所包含的原始变量的信息越强,贡献率也就越大。主成分的累计贡献率决定了主成分个数K的选取情况,为了保证综合变量能包括原始变量的绝大多数信息,一般要求累计贡献率达到85%以上。

另外,在实际应用过程中,选择主成分之后,还要注意主成分实际含义的解释。如何给主成分赋予新的含义,给出合理的解释是主成分分析中一个相当关键的问题。一般来说,这个解释需要根据主成分表达式的系数而定,并与定性分析来进行有效结合。主成分是原来变量的线性组合,在这个线性组合中各变量的系数有正有负、有大有小,有的又大小相当,因此不能简单地把这个主成分看作是某个原变量的属性作用。线性组合中各变量系数的绝对值越大表明该主成分主要包含了该变量;如果有几个大小相当的变量系数时,则认为这一主成分是这几个变量的综合,而这几个变量综合在一起具有什么样的实际意义,就需要结合具体的问题和专业,给出合理的解释,进而才能达到准确分析的目的。

(5)计算主成分得分。根据标准化的原始数据,将各个样品分别代入主成分表达式,就可以得到各主成分下的各个样品的新数据,即为主成分得分。具体形式可如下:

灾害损毁土地复垦

(6)依据主成分得分的数据,则可以进行进一步的统计分析。其中,常见的应用有主成分回归,变量子集合的选择,综合评价等。

(三)主成分分析法的评价

通过主成分分析法来评价复垦产生的效益,可将多个指标转化成尽可能少的综合性指标,使综合指标间互不相干,既减少了原指标信息的重叠度,又不丢失原指标信息的总含量。该方法不仅将多个指标转化成综合性指标,而且也能对每个主成分的影响因素进行分析,从而判别出影响整个评价体系的关键因素,并且主成分分析法在确定权重时可以科学地赋值,以避免主观因素的影响。

需要注意的是,主成分分析法虽然可以对每个主成分的权重进行科学、定量的计算,避免人为因素及主观因素的影响,但是有时候赋权的结果可能与客观实际有一定误差。因此,利用主成分分析法确定权重后,再结合不同专家给的权重,是最好的解决办法。这样可以在定量的基础上作出定性的分析,通过一定的数理方法将两种数据结合起来考虑。

❷ 主成分分析的主要步骤包括

主成分分析是指通过将一组可能存在相关性的变量转换城一组线性不相关的变量,转换后的这组变量叫主成分。
主成分分析步骤:1、对原始数据标准化,2、计算相关系数,3、计算特征,4、确定主成分,5、合成主成分。
主成分分析的原理是设法将原来变量重新组合成一组新的相互无关的几个综合变量,同时根据实际需要从中可以取出几个较少的总和变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上处理降维的一种方法。

主成分分析的主要作用
1.主成分分析能降低所研究的数据空间的维数。
2.有时可通过因子负荷aij的结论,弄清X变量间的某些关系。
3.多维数据的一种图形表示方法。
4.由主成分分析法构造回归模型。即把各主成分作为新自变量代替原来自变量x做回归分析。
5.用主成分分析筛选回归变量。
最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Va(rF1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。

阅读全文

与主成分分析法的研究方法相关的资料

热点内容
小孩叛逆期如何教育方法 浏览:857
窃读记的写作方法有哪些 浏览:149
扑救高球训练方法 浏览:988
塔基面积计算方法 浏览:920
乙二醇分析方法 浏览:299
地摘耧斗菜的种植方法 浏览:10
电脑hdmi连接电视的方法 浏览:926
15年快速小本赚钱方法 浏览:423
好的学习方法怎么找 浏览:102
摩托车吸油器的正确方法视频 浏览:540
正确挨打男孩屁股方法 浏览:81
whoo还幼面霜使用方法 浏览:314
麻芋粉的功效及食用方法 浏览:143
手机带皮套使用方法 浏览:557
私魅微雕使用方法 浏览:956
科学课堂结构和教学方法 浏览:852
提取小檗碱的方法有哪些 浏览:126
压缩机的电流计算方法 浏览:414
寰枢关节综合征锻炼方法 浏览:379
三相五线电压安装方法 浏览:197