A. 对波谱分析方法的认识与理解
四大谱:红外、氢谱、碳谱、质谱,对结构的确认是必须的。
B. 遥感方法应用研究和有效性评价
(一)遥感工作方法及工作层次概述
本次遥感地质研究工作区主要是凤-太矿集区。工作方法为:充分应用不同遥感数据源进行遥感数字图像处理、遥感地质解译、遥感蚀变信息提取、遥感信息的GIS技术分析等; 通过矿集区1:5万层次、矿区1:1万层次的研究工作,总结研究区域铅锌矿及金矿等典型矿床的的遥感标志特征,建立遥感找矿模型。
矿集区1:5万层次遥感工作采用了光谱分辨率较高的日本Aster数据,对凤-太矿集区进行了遥感图像处理、遥感地质解译及近矿围岩蚀变遥感信息提取等工作。技术重点是解决多光谱数据的彩色合成及融合问题,充分利用Aster多光谱数据的光谱特征准确提取与矿有关的弱矿化蚀变以及使用GIS对遥感信息进行分析。
1:1万层次遥感工作采用地面分辨率较高的美国IKONOS卫星数据,对包括八方山铅锌矿、八卦庙金矿等在内的100km2范围的遥感影像进行了处理,同时进行了地质解译分析,并在该层次上从遥感角度对该区的铅锌矿找矿、金矿找矿提出了建议。技术难点是高分辨率遥感数据的处理、数据融合及大比例尺遥感图像的制作,以及大比例尺遥感图像中微观地质因素的解译。
(二)凤-太矿集区1:5万层次遥感方法应用研究
1.数据概况
1:5万层次遥感工作采用日本Aster数据,该数据具有3个15m分辨率的可见光近红外波段、6个30m分辨率的短波红外波段及5个90m分辨率的热红外波段,单景面积60×60km2。与常用的TM/ETM数据相比,在地面分辨率和光谱分辨方面有很大的提高。特别是短波红外波段ETM的两个波段被分为6个波段,理论上对羟基蚀变矿物的识别程度有了很大的提高(表4-17)。
表4-17 Aster数据与ETM数据光谱分辨率及地面分辨率对比
2.图像处理
图像处理在PCI geomatic 10.0及ENVI 4.0两个专业遥感软件平台上进行。工作区使用的数据时相为2004年4月19日,该时相无雪无云,植被覆盖相当少,数据质量总体良好。工作区成图范围为:106°27′52″~107°04′05″E,33°45′40″~34°01′36″N。
图像处理过程经过图像校正、图像增强、彩色合成、数据融合等过程,其中,图像校正使用1:5万地形图进行校正; 图像增强主要进行了对比度扩展,使用适应性拉升对直方图进行了扩展; 彩色合成及数据融合方案经对数据各种统计参数的分析及不同方案的反复对比,最终选择了4(R)+8(G)+2(B)与2波段融合的方案,融合后图像分辨率提高为15m,并保留了假彩色合成的色彩(图4-36)。
图4-36 凤-太矿集区Aster遥感影像图
图4-37 银母寺铅锌矿床不同彩色合成方案效果对比
不同合成方案及融合效果对比见图4-37(以银母寺铅锌矿区为例)。由图4-37可以看出,4(R)+8(G)+2(B)与2波段融合的方案在色彩及信息量上是最佳的; 完全使用最高分辨率的123波段进行合成,图像分辨率最高但色彩信息量很差; 随着高分辨率波段在彩色合成中的减少,图像分辨率下降; 融合可以提高图像分辨率,同时保持较好的色彩信息。
3.地质解译
(1)线性构造解译
线性构造包括断裂构造和线性影像体,断裂构造在影像上具有明显的构造标志,如断层崖、连续直线状三角面、水系突然转折或分叉的连线、两侧影纹图案截然突变的界线等; 线性影像体指影像中直线状展布的线状要素,多数情况下为构造信息的反映。遥感构造的解译以图像目视解译为主,必要时辅以图像处理手段,如以定向滤波、比值分析等来突出地貌上的线性影像。
凤-太矿集区遥感线性构造比较发育,规模、性质不同,影像特征有所不同,根据构造规模及影像特点可以划分为4级。
1)一级遥感断裂:一级遥感断裂为区域性断裂,如北部的唐藏-板房子断裂(图4-38),该断裂构造控制着凤-太矿集区的北边界。遥感影像中断裂构造标志清楚,两侧岩石地层差异大,影像纹形、色调也有明显差别。
图4-38 唐藏-板房子断裂典型遥感影像
2)二级遥感断裂:二级遥感断裂主要为泥盆系地层中岩性软、硬接触面发育的走向断层,断裂大致平行,呈NWW向至近EW向展布,对泥盆系构造格架起着控制作用。这类遥感构造规模相对较大,两侧岩性差异比较清楚,如小南沟-磨房沟遥感断裂、碾子坪-石垭子遥感断裂(图4-39)。
3)三级遥感断裂:三级遥感断裂多为线性构造,数量比较多,规模比较小,主要有两组:一是斜切地层的NE向断裂,多具右行剪切性质; 二是层间断裂,与地层线一致图(4-40)。
图4-39 碾子坪-石垭子二级断裂遥感影像(局部)
图4-40 三级断裂遥感影像
4)NE向节理群带:凤-太矿集区不均匀地发育有一组NE向密集遥感线列影像群带(图4-41),实地验证为节理带,这组构造对金矿化富集起着积极作用。
(2)环形构造解译
环形构造指成因与地质构造有关的由弧形或环形影纹构成的环状影像体,区内共解译出环形构造与环形构造影像6个。综合地质、物探、化探资料分析,其中图幅内规模最大的环形构造即王家庄-坪坎环形构造,其可能为稳定基底型环形构造,地表东西长约38km,南北最宽22km,为长轴近东西向的椭圆状,环形体内外影像在影纹、水系格局等方面存在明显的差异,代表着泥盆系基底同生沉积构造; 图幅西部凤县环形影像解译为断裂交汇型环形构造,其环形体由弧状水系与山脊构成,内部呈正地形,纹形杂乱,色调深浅不均,环内有NE向和NW向两组断裂交汇。此外,还有一些环形构造,目前其性质不能判明。
(3)褶皱构造解译
凤-太矿集区总体呈现为一个由中泥盆统为翼,上泥盆统为核,走向NWW—近EW的复式向斜构造,在全区卫星图像及岩性解译图上可以看出。另外,以中泥盆统古道岭组灰岩为核、星红铺组千枚岩为两翼的地层又构成若干次级背斜以及短轴背斜。由于南北向构造挤压强烈,背斜构造多呈紧密线型,遥感影像十分明显(图4-42)。这类次级背斜构造的倾伏端或两翼往往是铅锌矿定位的有利构造部位。
图4-41 北东向节理群带遥感影像
图4-42 背斜构造遥感影像
(4)地层(岩性)解译
岩性、矿物组合的不同及岩石结构的差异都会在波谱特征上显示出变化,在地貌上反映为不同的影像结构及不同的色调和纹理特征。凤-太矿集区解译、划分出以下遥感岩石组合单元:
1)第四系松散堆积物:彩色图像上呈淡青色、细斑点状图案,人文活动形迹清楚,主要分布于嘉陵江、安河两侧。
2)下白垩统东河群灰绿色砂砾岩:遥感影像上分布在中低山或山前坡地,彩色合成图像上呈浅棕色间白色斑块。
3)侏罗系泥岩、粉砂岩、砂岩:彩色合成影像上为浅棕红色,地貌相对比较平坦。
4)下三叠统任家沟组粉砂岩、薄层灰岩:影像上为规模较大的山体,水系为对称枝状或弧状。
5)下三叠统西坡组薄层灰岩夹钙质粉砂岩:影像上为较大山体,水系对称,排列整齐,具较宽的V型谷。
6)中下二叠统十里墩组炭质砂质板岩、长石砂岩、砂砾岩:影像特征纹理比较细腻,冲沟多与地层走向一致。
7)中石炭统灰岩、泥灰岩、灰质板岩:影像显示深暗色带,高山地形,多为桌状山、条状山或条块山。
8)上泥盆统铁山组厚—薄层灰岩:影像上显示山体陡峻,水系多为Y状分岔,或水系与山脊组合成“搓板”状。
9)上泥盆统九里坪组上段砂质板岩、砂质灰岩:高山地貌,砂质灰岩在彩色合成图像上呈绿色条带。
10)上泥盆统九里坪组下段细砂岩夹千枚岩:影像上水系短小,似平行排列。
11)中泥盆统星红铺组钙质千枚岩夹薄层泥质灰岩、砂质灰岩:影像上水系发育,细而密集,呈线状影纹,较乱,无规则,可见近EW向层结构纹。
12)中泥盆统古道岭组上段灰岩:影像上地貌显示为陡立山峰、棱状山脊、直线状水系、V型谷,冲沟短而直。影纹呈栅状、梳状。
13)中泥盆统古道岭组下段粉砂岩、砂质钙质千枚岩:影像上地貌显示为高山、弯曲状棱形山脊,局部可见分支状,树枝状、直线状水系,沟谷相对开阔,冲沟不发育,影像上影纹为细线状。
14)花岗岩组:岩基呈粗大的树枝状纹形图案,色调较深,呈暗绿色,以太白岩基为特征; 小花岗岩体纹形较细,色调较浅。
15)花岗闪长岩:遥感影像上显示典型树枝状水系,宏观影像为块状。
4.遥感异常信息提取
(1)遥感异常信息提取过程
一种地物或岩石在两个波段上的波谱辐射量是有差别的,这就是波谱曲线的坡度,不同地物在同一段曲线上的坡度有大有小,有正有负,比值方法就是增强这种微小的差别,同时还会消除或减弱地形信息的差别。
工作区特征蚀变信息的提取主要是依据数据特征及工作区主要的蚀变特征而进行的。地质工作研究表明,工作区最主要的蚀变特征为“硅化、铁白云石化、碳酸盐化、褐铁矿化”等,硅化信息的提取对于该数据不能完成,因为SiO2在0.52~11.65nm范围内没有特征的吸收显示,因此信息提取主要为白云石化和碳酸盐化的提取。
由图4-43可以看出,白云岩在9波段具有一定的反射,而在8波段具有特征吸收。依据以上特征使用Aster数据B8、B9波段进行比值运算,提取白云岩的特征信息,理论上信息图像中主要集中了白云岩等碳酸盐岩信息。图4-44为遥感地质解译图(附蚀变信息)。
图4-43 凤-太矿集区白云岩PCI光谱曲线
(2)蚀变信息分析
应用MAPGIS中区空间分析功能对遥感蚀变信息的分布特征进行了分析,图4-45a为解译的各种地层在工作区中的面积,图4-45b为遥感蚀变信息在各地层中的分布比例,可以看出星红铺组(D2x)分布的面积最大,其次为古道岭组和九里坪组上段,这也与该地层的岩性一致,同时也表明了蚀变主要分布的地层。图4-45c为信息面积占分布地层面积的比例,可以看出古道岭组中信息比例最高,上、下两段中信息比例占有近40%,表明古道岭组蚀变最为发育,同时也是矿体赋存的主要层位。
图4-44 凤-太矿集区局部遥感地质解译图(附蚀变信息)
遥感蚀变信息与已知矿床(点)叠加的分析表明,凤-太矿集区铅锌矿大多与遥感提取的白云岩化信息有关。如银母寺铅锌矿床、二里河铅锌矿床、铅硐山铅锌矿床等周围都存在遥感蚀变信息。值得注意的是还有许多具有遥感异常的区域目前没有发现矿体,有待进一步工作。
5.遥感地质认识
凤-太矿集区中部地区的王家庄-坪坎环形构造,代表着泥盆系基底性质的同生沉积构造,航磁异常对应显示为均匀低磁特征。该基底型环形构造内泥盆系含矿地层岩相比较稳定,岩浆活动与构造变形相对较弱,控制了主要铅锌多金属矿产的分布,矿床具有热水沉积特征。铅锌多金属矿床的产出与古道岭组灰岩、星红铺组千枚岩岩性接触带关系密切,矿床定位主要受次级背斜构造控制。
总结凤-太矿集区铅锌多金属矿床(点)赋矿空间与遥感岩石地层及遥感构造的关系,得出找矿信息位于:①以灰岩为核的背斜倾伏影像部位; ②灰岩影像分支部位; ③以灰岩为核的背斜轴线转折部位; ④以灰岩为核的短轴背斜及隐伏背斜。
(三)凤-太矿集区1:1万层次遥感方法应用研究
1.数据概况
1:1万层次遥感工作采用美国IKONOS卫星数据,该数据具有4个4.0m分辨率的多光谱波段、1个1.0m分辨率的全色波段。由于地面分辨率大幅提高,该数据在制作大比例尺遥感图像与解译微细构造等方面具有很大的优势。
图4-45 凤-太矿集区遥感蚀变信息分布特征
2.图像处理
工作区使用的数据时相为2008年3月10日,该时相无雪无云,植被覆盖较少,数据质量总体良好。工作区成图范围为:106°49′55″~106°57′37″E,33°53′17″~33°58′02″N。
图像处理过程经过图像校正、图像增强、彩色合成和数据融合等过程。其中图像校正使用1:5万地形图进行校正,比较粗略。图像增强主要进行了对比度扩展,使用适应性拉升对直方图进行了扩展。彩色合成及数据融合方案经对数据各种统计参数的分析及不同方案的反复对比,最终选择了3(R)+2(G)+1(B)与全色波段融合的方案,融合后图像分辨率提高为1m,并保留了假彩色合成的色彩(图4-46,图4-47)。
图4-46 凤-太矿集区八方山及外围地区IKONOS遥感影像
图4-47 二里河铅锌矿床IKONOS遥感影像(局部)
3.地质解译
地质解译通过对八方山-八卦庙地区1:1万IKONOS卫星影像解译分析(图4-48),主要对工作区内的碳酸盐岩分布区及以碳酸盐岩为标志层的次级褶皱构造进行了圈定,同时对区内线形断裂构造及人类采矿形迹进行了解译,结合已有的地质资料初步得出以下认识:
图4-48 八方山-八卦庙地区1:1万遥感地质解译图
(1)遥感构造格局及分区特征
八方山-八卦庙地区遥感线性构造与褶皱构造分布特征显示,该区构造具有SN向分区特点。以黄泥峡沟脑-铜铃沟(银母寺-平坎)断裂为界线,形成两个NWW向展布遥感构造单元。边界断裂略呈弧形展布,走向NWW,断裂规模大、延伸长。影像显示,以该断裂为界,两侧地层褶皱变形特点完全不同。铜铃沟一带出露的酸性脉岩带基本沿分界断裂的北侧分布,研究区处于构造变形强烈的北部区。
北区构造变形十分强烈,以碳酸盐岩为标志的影像层呈分支复合、尖灭再现,形成一系列规模不等的褶皱。单元内部EW向与NWW向断裂比较发育,切割部分褶皱。上述褶皱与断裂构造控制着八方山-八卦庙地区绝大多数的多金属-贵金属矿产产出。南区古道岭组出露连续、稳定,代表碳酸盐岩的影纹规则、连续性好,褶皱构造与断裂构造影像极不发育。南部构造区至今未发现成型矿产。
(2)NNE向—近SN向二次叠加褶皱
凤-太矿集区经历了NWW向区域褶皱之后,受EW向应力作用,西河以西地区又叠加形成了轴向NNE向—近SN向的二次变形褶皱。该褶皱形态宽缓,褶皱轴在铜铃沟—八卦庙一带,遥感影像中可见及一系列同向弯曲、弧顶向南的弧形山脊与水系,同时伴有同向弧形展布的串珠状岩块出露,代表了褶皱的转折部位。根据八卦庙一带灰岩急剧变厚的现象判断,应属宽缓的背斜构造,该地区出现的NNE向密集线列影像应该代表了轴面辟理或者轴部张性断裂群。
(3)EW向断裂控制NW向雁列式背斜
八方山-严家坪-八卦庙EW向断裂切割了泥盆系,构造的局部抬升使断裂南侧古道岭组灰岩为核的次级小背斜沿EW向断裂清楚地显露出地表。背斜北西端被EW向断裂切割,核部灰岩在此出露最宽; 背斜轴向SE倾伏,核部灰岩逐渐尖灭。稍远于该断裂,影像亦显示有多个类似的次级褶皱存在,集中分布于二里河、打柴沟两侧以及手扒崖东侧。据影像特征分析,多属于半隐伏-隐伏的短轴褶皱,埋深不大。
(4)白杨沟-马家渠复式向斜构造
通过以古道岭组灰岩为典型标志层的岩性解译、追踪圈定了白杨沟-长沟-核桃沟复式向斜构造。该复式向斜走向NWW,出露全长约12km。由于NWW向断裂切错,褶皱在银洞沟-核桃沟段位移、破坏,显示不连续(该段褶皱挤压紧闭,两翼灰岩不易区分)。但是该褶皱构造在白杨沟向西的转折端和在西河马家渠向东的转折端显示比较清楚。向斜两翼以古道岭组灰岩为核的次级背斜发育。
(5)特殊影像块体
在南沟的偏沟、八卦庙北等地,古道岭组灰岩的旁侧,出现了几处影像色彩比较特殊的影像块体,比较容易与碳酸盐岩混淆。虽然目前尚不明确遥感波谱所反映的是何种岩石组合或者何种蚀变,值得注意的是,八卦庙北部的特殊影像块体与已知的金矿床空间关系密切,偏沟特殊影像块体附近也有丝毛岭矿化蚀变带出现。经对比同类方法处理的TM图像,与东部的双王金矿钠长角砾岩带影像具有十分相似的特征。
4.找矿预测
研究区铅锌矿的找矿预测工作应紧密围绕所解译确定的以古道岭组为核心的褶皱转折端以及短轴背斜开展,对于所圈定的性质不明的鼻状构造也应列入探查之列。
(1)二里河紧密褶皱群
沿二里河解译出5个连续出现的褶皱构造,由北而南分别为:
1)二-1次级向斜:以条带状灰岩影像为两翼,轴向NWW,可见影像约1000m,在二里河东侧转折。据影像中显示的二里河铅锌矿采矿活动位置,位于二-1向斜南北翼部。
2)二-2鼻状构造:灰岩影像呈锐角状在二里河东拐折,形成一倒Y字形。
3)二-3穿刺背斜:长轴呈NWW走向、等轴双层状显示,出露长约900m。中部为深色影像块体,推测为浅埋藏的灰岩,外侧环绕有浅色环带,可能为蚀变千枚岩。二-3穿刺背斜影像结构特征及规模都与八方山背斜十分相似,其背斜轴向与八方山背斜大致可以对应。
4)二-4次级背斜:轴向NWW,影像显示出露1.3km,背斜西侧转折端清晰,东侧转折部位影纹较杂乱,与二-3穿刺背斜具有相似的双层结构特点。该背斜与Pb异常吻合较好,南侧并有走向一致的TEM异常。
5)二-5短轴向斜:轴向近EW,影像出露约500m,与二-1次级向斜有相同的纹形与色彩特征。
根据影像特征与铅锌矿成矿规律分析认为,二里河紧密褶皱群具有良好的找矿前景,且埋藏较浅。尤其二-3穿刺背斜和二-4次级背斜是寻找八方山式铅锌矿床的良好构造。可在背斜转折端布置浅钻验证。
(2)苏家沟紧密褶皱群
苏家沟解译出4个次级褶皱和鼻状构造,根据不很典型的灰岩影像特征看,褶皱属于隐伏状态,埋藏深度较二里河大。由北向南依次为:
1)苏-1短轴向斜:轴向近EW,出露长度约1km,翼部碳酸盐岩影纹断续,东部转折端比较清楚,西部转折端隐约不明。
2)苏-2不完整次级向斜:轴向近EW,影像出露延伸大于1km,西部被横向断裂切截,东部转折端清楚,向斜翼部碳酸盐岩影纹比较连续。
3)苏-3鼻状构造:轴向近EW,东部发生转折,根据影纹判断,可能为一小背斜的倾伏端。
4)苏-4线状背斜:总体呈NWW向延展,向SE方向倾没,影像显示为比较清楚的灰岩条带。
苏家沟紧密褶皱群区具有面状Zn异常分布,同时苏-1、苏-2和苏-3褶皱出露部位有形态与褶皱相似的TEM异常和热释汞异常。
在该紧密褶皱群(区)同样具有较好的找矿前景,可以作为找矿靶区,建议通过地表工程验证褶皱的存在,并调查含矿性。
(3)打柴沟褶皱群
沿打柴沟两侧断续出露有碳酸盐岩影纹,圈出6个褶皱,根据影像显示,除打-1为一近EW向的鼻状构造(次级向斜)外,其余5条均为NW—NWW向平行、斜列展布的线状背斜,背斜核部灰岩影像断续、隐约,部分地段为推测。
该区具有找矿条件,可以作为找矿预测区。
(4)核桃沟复式向斜的次级背斜部位
遥感解译的核桃沟向斜是以古道岭组灰岩为翼部标志层构成的复式向斜,两翼由碳酸盐岩组成复杂的次级背斜。根据影像所显示的采矿活动形迹,10多个采矿点都与这些次级背斜空间关系密切。
(四)秦岭地区遥感方法应用与解译有效性评价
1)通过对凤-太矿集区1:5万和1:1万遥感影像数据处理和解译,认为在秦岭中高山强覆盖地区开展大比例尺遥感影像解译,Aster数据和IKONOS数据均能够满足分辨率方面的要求。采用彩色合成、数据融合等手段进行数据处理,能够有效地增强数据的可分辨程度。
2)利用Aster数据的多光谱特性在1:5万层次进行特征矿物蚀变信息的提取较ETM/TM数据具有较高的优越性。
3)采用Aster数据开展1:5万层次影像解译,遥感信息提取成果及地质解译与已知地质要素吻合程度较高。
4)利用IKONOS数据开展1:1万层次影像制作,在微观地质单元的解译方面具有明显优势。如对小面积的碳酸盐岩(及其褶皱构造)分布区域以及人类采矿形迹能够达到详细解译的程度,遥感解译与地质吻合程度较高。
总之,在秦岭中高山强覆盖地区使用Aster数据、IKONOS数据进行1:5万和1:1万层次的遥感地质勘查,方法得当,工作有效程度较高。
C. 分析化学在当前高新技术中的应用
第三章 现代化学与新材料技术
一、内容提要
本章有三节。第一节是从化学发展的历史说起,介绍现代化学研究的内容和化学分析基础知识。第二节介绍一些传统材料特性及其应用。第三节介绍新材料技术。
二、重点与难点
本章学习重难点为新材料技术与现代化学分析技术。
三、教学辅导
化学是一门在分子、原子水平上研究物质组成、结构和性能的辩证关系,以及物质、能量转化规律的科学。化学也是一门满足社会需要的中心科学,在现代社会中,化学对材料、能源、农业、资源的开发,满足和改善人民生活,促进社会生产发展都有着巨大的作用。材料是人们用来制造有用物品的各种物质。材料是人类生产和生活活动的物质基础,也是社会生产力的重要因素。材料科学是当今科技发展研究的重点,它的发展又与现代化学发展密切相关。我们学习本章内容时,分解为以下几个问题。
1. 现代化学是如何发展起来的?
化学的发展,经历了很长的历史时期。
(1)古代化学的产生
大约五十万年以前,人类发明了“钻木取火”,掌握了人工取火的技术。火的利用是人类最早的一项化学实践活动,也是人类最早知道的一种化学现象,它为人们以后研究和实现一系列物质的化学变化创造了条件。古代化学是一种实用化学,由它产生的制陶,金属冶炼,火药制造,染色,酿酒等化学工艺,几乎成为古代社会生产力发展的最重要的因素。古代人们在实践的基础上,掌握了过滤、溶解、结晶、升华和熔融等化学技术的同时,对物质也有了总体的认识,产生诸多的物质观点,如我国战国时期的“五行说”,古希腊亚里斯多德的“四素说”等。这些化学制作工艺和学说,积累了大量的操作经验和化学知识,为近代化学的发展奠定了基础。
(2)近代化学的建立
16世纪末至17世纪初,化学理论逐渐建立,英国化学家和物理学家波义耳,在1661年,首次提出了科学的元素新概念,把化学确立为一门实验科学。之后,法国化学家拉瓦锡在大量的实验基础上,提出氧化说,使化学基本理论和基本研究方法发生了重大变革。由此,化学走向近代定量科学,一系列有关物质变化定量规律,如质量守恒定律,当量定律被发现。特别是英国化学家和物理学家道尔顿的科学原子说,第一次将化学实验总结的规律与物质的原子构成的观点联系起来,使化学进入了一直持续至今的原子说为主线的新时期。
意大利化学家阿佛加德罗的分子假说,俄国化学家门捷列夫在1869年发现的元素周期律,使化学研究从个别的、零散的和无规律的事实罗列中摆脱出来,奠定了现代化学的基础,近代化学科学逐渐形成了包括:近代无机化学、近代有机化学、近代分析化学和近代物理化学四大独立的分支科学体系。
(3)现代化学的形成
二十世纪初,物理学科的新发现和新技术特别是相对论和量子力学为现代化学进一步发展概念和定量描述提供了理论依据,将化学和整个自然科学的研究,推进到更深的层次上。化学分支不断涌现,化学朝着深、细、精,多学科、综合化的方向发展。与此同时,现代化学工业的蓬勃发展,化学工业和产品,在人类生活和经济活动中具有越来越重要的地位和作用,如化肥增产,使农业丰收;化学工业的发展,使新材料层出不穷。特别是20世纪20年代以后出现的有机合成工业的发展,更加丰富了现代人们的生活。
2. 什么是现代化学研究的特点?
现代化学有如下特点:
①研究层面由宏观向微观发展;
②研究方法由定性向定量发展;
③研究对象由静态向动态发展;
④研究结果由描述性向推理性发展。
这些特点表明了现代化学总的发展趋势是既高度分化又高度综合。现代化学一方面,从自身产生了很多新的学科分支,如:无机固体化学、配合物化学、分子动力学等。另一方面,又与其他自然科学相互渗透交叉,形成一系列新的边缘学科,如:生物化学、地球化学、环境化学等。
3. 现代化学研究的内容有哪些?
现代化学研究的内容可以归纳为三个方面:第一是深入研究化学反应理论,开发化学反应过程来揭示化学反应的实质,进而设计最佳的化学反应过程。第二是提高结构力量水平,致力于寻找或设计最需要、最佳的化合物材料或体系。第三,发展分析和测试新方法,依靠计算机技术及多学科综合,使化学研究信息趋于更高的灵敏性和可靠性,为高科技发展创造新分子,为社会需要合成特定性能的材料和物质。
4.现代化学研究方法的特点是什么?
现代化学研究不仅要综合其他自然科学的理论成果,而且还要综合运用其他自然科学的
究方法。现代化学需要多学科知识的综合、众多高深理论作指南、依靠多种专业人员细密
分工和合作,用多种精密仪器设备作检测的手段。其研究的方法,必要博采众长,协同多学科合作进行,以整体思维来思考。
5.什么是现代化学分析技术?
现代化学分析技术包括基础化学分析技术和仪器分析法。
(1)基础化学分析技术
在近代建立的分析化学是一门研究物质化学组成的科学,它有两大任务,一是定性分析,主要是确定被测物质有哪些组分组成的。二是定量分析,主要是确定这些组分的相对含量。
定性分析:
定性分析是应用物质的化学反应将被测组分转化为有特殊性质的新物质,通过观察其
生物有无气体,沉淀或有色物质等特征的产生,来推断被测物中某种组分的存在。
定量分析:
定量分析有经典化学分析法和仪器分析法两大类。经典定量分析法是应用沉淀反应,中和反应、氧化还原反应或络合反应的原理,对已知组分含量进行测定。
(2)仪器分析法
仪器分析是现代发展起来的一种分析方法,它大多要借助一定的仪器设备,根据物质
的物理或物理化学的性质,来测定某种组分的方法。故又称为物理化学分析法或物理分析法。仪器分析法具有操作简便、快捷、准确等优点,特别对于含量很低的组分的测定,更有独特之处。仪器分析法有很多种,常用的有以下5种:
光谱分析法:
它是根据物质发射,吸收电磁辐射,以及物质与电磁辐射的相互作用来进行分析的一种方法。
色谱法:
它是一种分离技术,它的分离原理是使混合物中各组分在固定相和流动相两相中分配。当流动相中的混合物经过固定相时,就会与固定相发生作用,由于试样的各组分在结构和性质上的差异,它们与固定相作用的大小、强弱也不同。我们根据被测组分在两相间进行分离作用的差异,进行定性和定量分析。
电化学分析法:
它是利用物质的电学及电化学性质来进行分析的方法。
质谱分析法:
它是现代物理与化学使用的极为重要的工具。它的基本原理是试样在离子源中电离后,生成各种带正电荷的离子,它们在加速电场的作用下,形成离子束射入质量分析器。在磁场的作用下,离子作等速圆周运动并分离,然后,由记录系统得到质谱图,根据质谱图上谱线
的位置及相应离子的电荷数进行定性分析,再根据谱线黑度或相应离子流的相对强度,进
行定量分析。
核磁共振波谱分析法:
它也是现代仪器分析的重要方法之一,它的基本原理是在强磁场的激励下,根据一些具
有某些磁性的原子核对高频无线电电波的共振吸收,来推断被测物的分子结构。
6.金属与金属材料有哪些特性?
目前,我们已知的元素有109种,其中金属有87种。除汞以外,所有金属都是固体
金属具有“自由电子”,它在金属晶体中能自由流动。我们熟知的金属具有特殊的金属光泽、是热和电的良导体等性质,很大程度上与金属晶体结构有自由电子有关。如:自由电子能吸收可见光,然后又反射出大部分频率的光,使金属显示特有光泽。自由电子在外电场的作用下,作定向流动,形成电流,这就是金属导电的原因。自由电子受热后,能量增大,运动速度也加大,它与金属离子碰撞而传递能量,从而使金属具有良好的导热性等。
在冶金工业上,我们把金属分为两大类。一类为黑色金属,指铁、铬、锰及其合金。另一类为有色金属,除去黑色金属之外其他金属都是有色金属。
金属是人类历史上使用最早的材料之一,直到20世纪中叶,金属材料也一直在材料中
占绝对优势。因为金属材料有如下的优势:(1)几千年以来有一套成熟的生产技术和庞大的生产能力,如钢铁工业。(2)金属有许多优良的理化性能,形成其他材料不能完全替代的使用优势,如:比陶瓷高得多的韧性,磁性和导电性等。(3)近、现代高新技术创新,产生出许多新的金属材料,如优质钢、高强度钢、各种合金和新金属材料等
目前,人们生产和生活应用最多的金属材料仍是钢铁、铜和铝。
7.非金属与非金属材料有哪些特性?
目前,我们已知的非金属元素,共22种。除氢以外,它们的原子最外层的价电子为3—7
个,它们大多在化学反应中倾向于得到电子而显示氧化性。非金属元素形成单质主要有两
种情况,一种是分子晶体,另一种是原子晶体。它们显示的性质各异,如分子晶体熔沸
较低,而原子晶体熔沸点较高等等。
非金属材料有:
(1)玻璃玻璃是一种无定型硅酸盐混合物。人们利用玻璃制造成各种各样的器皿、
艺术品。玻璃是建筑业最基本的材料之一,它不仅可以用于采光、隔热,而且也可用于装饰。
(2)水泥水泥是建筑行业大量应用的硅酸盐材料。
(3)陶瓷生产陶瓷的原料有天然矿物原料和通过化学方法制备的化工原料二种。天
然矿物原料主要是粘土,主要化学成分是水合硅酸铝类。陶瓷是一种重要的材料,用于工业、建筑、生活等,如室内装饰墙地砖、卫浴用品、茶具、器皿。据考古发现。我国10000年前已有陶器,3000年前商代已有原始瓷器,我国古代陶瓷制品是我国灿烂文化的一部分。
8.有机化合物和有机高分子材料
早期,人们认为有机物是从动植物体内获取的物质,是“有生机之物”,故称之为“有机化合物”,现在人们已经知道有机物可以由简单的无机物人工合成制取。组成有机物除了碳元素之外,还有氢、氧、氮、磷、硫和卤素等非金属元素,许多有机物还含有金属元素。从分子结构上看,有机化合物可以看作碳氢化合物及其衍生物。
有机物的种类很多,结构各不同,因而性质也各异,但一般地,有机物具有如下共性:
①通常情况下,有机物的熔、沸点较低,常以气体,低沸点的液体或低熔点的固体存在
②大多有机物难溶于水,易溶于有机溶剂,符合化学上“相似相溶”原理。
③绝大多数有机物具有热不稳定性,受热易分解,还较容易燃烧,燃烧后,有机分子中的碳、氢、氧、硫,最终的产物为二氧化碳、水、二氧化硫等。
有机化高分子化合物的平均分子量比一般的化合物大很多,它们的分子量大约在几万到
几十万之间。天然存在的有机高分子化合物有蚕丝、羊毛、纤维素等,它们很早就在为人类服务了。人工方法合成的有机高分子化合物中,人们广泛应用的是塑料、合成纤维、合成橡胶等。
9.现代新材料技术
20世纪50年代以来,科学技术的突飞猛进,新材料研究异常活跃。新材料技术既是高新技术的一部分,又时刻为高新技术服务。作为新材料技术具有以下的特点:①它是知识密集、资金密集的新兴产业。②它与高新技术发展关系密切,相互促进、相互依赖。③新材料是高新技术发展必要的物质基础,也是当代高新技术革命的先导。④新材料技术还是社会生产力发展水平和技术进步的标志。
现代新材料主要有以下几种:
(1)新金属材料
超导材料稀土材料形状记忆合金贮氢合金非晶态合金
(2)无机非金属材料
新型陶瓷特种无机涂层材料
(3)新型有机高分子材料
高性能塑料 特种纤维特种橡胶,其它功能高分子材料如高分子分离膜、导电高分子材
料等等。
(4)特殊功能的复合材料
玻璃钢碳纤维增强树脂复合材料聚合物基、金属基和陶瓷基复合材料
(5)纳米材料
纳米材料是当今材料科学研究中的热点之一。纳米(nm)实际上是一个长度单位,
纳米是1米的十亿分之一,即1纳米=10-9米。纳米是一个非常小的空间尺度。纳米材料就是用特殊的方法将材料颗粒加工到纳米级(10-9米),再用这种超细微粒子制造人们需要的材料。
目前,纳米材料有四种类型:纳米颗粒、纳米碳管和纳米线、纳米薄膜和纳米块材。纳
米材料具有较大的比表面,在结构中的键态严重失配,产生了许多活动中心,因而,纳米材
料有很强的吸附能力。小尺寸效应使其理化性能发生改变,并出现与常规材料不同的新的
特征。
纳米材料显示了广泛的应用前景。例如:利用纳米材料制成磁记录介质材料广泛应用于
电声器件、阻尼器件等。纳米金属颗粒还是有机化合物的氢化反应的催化作用一种极好的催化剂。纳米材料还可以用于医学、生物工程。例如:利用纳米微粒进行细胞分离、细胞染色体,用纳米微粒制成的药物可更方便地在人体内传输,进行局部治疗和组织修补。纳米探针和纳米传感器应用,也可能带来诊断技术的革命。未来纳米科技的发展,有三方面的意义,一是疾病的早期诊断,例如癌症的检出可达到几个细胞大小。二是高密度的信息储存,会在很小的位置上储存大量信息。三是开发新的高性能材料,应用于高科技领域。
总之,纳米技术的研究和应用不仅能引发一场新的工业革命,而且还会带来人类认
知革命,产生观念上的变革,它将对21世纪科学技术的发展产生重大的促进作用。
10.什么是新材料发展的方向?
随着社会的进步,人类总是不断地对材料提出新的要求。当今新材料的发展有以下几点:
(1)结构与功能相结合。即新材料应是结构和功能上较为完美的结合。
(2)智能型材料的开发。所谓智能型是要求材料本身具有一定的模仿生命体系的作用,既具有敏感又有驱动的双重的功能。
(3)少污染或不污染环境。新材料在开发和使用过程,甚至废弃后,应尽可能少地对环境产生污染。
(4)能再生。为了保护和充分利用地球上的自然资源,开发可再生材料是首选。
(5)节约能源。对制作过程能耗较少的,或者新材料本身能帮助节能的,或者有利于能源的开发和利用的新材料优先开发。
(6)长寿命。新材料应有较长的寿命,在使用的过程中少维修或尽可能不维修。
D. 遥感影像信息的提取技术方法研究进展
遥感的对地观测系统是一个信息流交换的过程:电磁波与地表物体相互作用形成地表信息交流。而遥感影像信息提取技术就是最大限度地从遥感图像上的光谱信息反演出目标地物本身的属性特征信息。进而可对地球表层资源与环境进行探测、分析,并揭示其要素的空间分布特征与时空变化规律。遥感影像信息的提取技术是建立在对地物规律有充分的了解的基础之上的,其综合物理手段、数学方法和地物状态识别等认识,通过对影像的处理与分析,获得能反映区域内地物的分布规律和变化过程的有效信息的技术方法。
遥感地物识别主要依赖于地物的光谱和空间特征的差异。多光谱由于光谱分辨率低,地物的光谱特征表现不充分,地物识别主要依赖地物的空间特征,包括灰度、颜色、纹理、形态和空间关系。信息处理和信息提取主要是应用图像增强、图像变换和图像分析方法,增强图像的色调、颜色以及纹理的差异,达到最大限度地区分地物的目的。随着成像光谱仪研制成功以及其产业化的发展,遥感地物信息提取也随之进入了一个崭新的时代。成像光谱对地物的识别主要是依赖于地物的光谱特征,是直接利用岩石矿物的光谱特征进行地物识别,定量分析地物信息。下面从多光谱和高光谱遥感信息处理两方面来加以论述。
1.多光谱方法研究进展
多光谱的信息提取主要集中于:色调信息提取,纹理信息提取,信息融合。
(1)色调信息提取
对于色调信息提取,主要是采用一些增强处理,扩大图像中地物间的灰度差别,以突出目标信息或改善图像效果,提高解译标志的判别能力,如反差扩展、彩色增强、运算增强、变换增强等,这些传统的图像处理方法在一定程度上满足了应用的需要。近年来发展了一系列的以主成分变换为主的信息提取技术,在岩矿信息提取中发挥了重要的作用。如张满郎(1996)提出修正的直接主成分分析提取铁氧化物信息。OF 变换(Maxium Noise Fraction Transformation)(Kruse,1996,Creen,et al.,1988),NAPC(Noise-adjust Principal Components Transform)(Lee,et al.,1990)、分块主成分变换(Jia,et al.,1999)、基于主成分的对应分析(Carr,et al.,1999),以及基于主成分分析的空间自相关特征提取(Warner,et al.,1997)、子空K投影(Harsanyl,et al.,1997)和高维数据二阶特征分析(Lee,et al.,1993;Haertel,et al.,1999)等,也是基于主成分分析进行信息特征选择与特征提取。同时,根据模式识别的原理,提出并设计出监督分类与非监督分类方法:以及利用决策树进行分类识别(Wrbka,et al.,1999;Friedl,et al.,1999;Hansen et al.,1996),这些技术与方法是建立在图像灰度特征之上,利用数理统计的知识进行地物分类与信息提取。
(2)纹理信息提取
遥感影像的边缘和纹理信息对线环构造的识别具有一定作用,但却似乎无助于岩性的识别。边缘信息提取通常采用滤波算子或锐化的方法进行(Gross,et al.,1998;Varbel,2000)。纹理信息提取通常采用共生矩阵、傅立叶功率谱和纹理谱等方法。
(3)信息融合
多源数据融合研究也非常普及与深入,其技术方法涉及不同的数理知识(Jimen,et al.,1999;Pohl,1998;Robinson,et al.,2000;Price,1999;Gross et al.,1998),比如小波信息融合。应用面涉及非遥感数据(王润生,1992;朱亮璞,1994),如遥感数据与地化数据、物探数据的叠置与融合。这些方法一方面开阔了遥感的应用视野,另一方面也扩展了遥感的应用能力。
总的来说,多光谱遥感岩矿信息提取主要是基于图像灰度特征,即基于岩矿的反射率强度差异,采用一些数学变换方法,增强或突出目标信息,使之易于目视解译。在数据处理中,由于波段有限,未能有效地导入岩矿类别的光谱知识,其结果精度更多地取决于研究人员的经验。
2.高光谱方法研究进展
成像光谱技术是多光谱技术发展的飞跃,它是在对目标对象的空间特征成像的同时,对每个空间象元经过色散或分光形成几十个乃至几百个窄波段以进行连续的光谱覆盖。形成的遥感数据可以用“图像立方体(三维)”来形象描述,其中两维表示空间,另一维表征光谱。这样,在光谱和空间信息综合的三维空间内,可以任意地获得地物“连续”的光谱以及其诊断性特征光谱,从而能够基于地物光谱知识直接识别目标地物,并可进一步地获取定量化的地物信息。在地质应用中,矿物识别和信息处理技术可分为:①基于单个诊断性吸收的特征参数;②基于完全波形特征以及③基于光谱知识模型三大类型。
岩石矿物单个诊断性吸收特征可以用吸收波段位置(λ)、吸收深度(H)、吸收宽度(w),吸收面积(A)、吸收对称性(d)、吸收的数目(n)和排序参数作一完整地表征。根据端元矿物的单个诊断性吸收波形,从成像光谱数据中提取并增强这些参数信息,可直接用于识别岩矿类型。如IHS编码与吸收波段图(Kruse,1988)是利用连续法去除后的光谱图像,定义出波段吸收中心位置图像,波段深度图像以及波段半极值宽度图像,并分别赋予HS I 空间的明度(H)、强度(l)和饱和度(S),然后逆变换到RGB色度空间。从而根据色调差异进行矿物直接识别。在描述岩矿单个诊断性吸收特征参数中,吸收深度是一非常重要的特征指标而受到重视。如相对吸收深度图(RBD image,Relative absorption Band-depthimage)(Crowley,et al.,1989)采用比值运算来增强识别端元的吸收深度,即根据要识别端元的单个诊断性吸收峰的两侧肩部反射率之和,除以其谷中心邻近两侧对应波长的反射率之和的商图像,来表征端元矿物诊断性吸收峰的相对吸收深度。不同端元矿物的RBD图像,除象元本身比值大小代表了端元矿物存在的可能性外,通过进一步地诸如PC变换分析进行特征增强与选择来识别端元矿物。由于吸收峰的非对称性,采用RBD方法难以准确描述其特征。连续插值波段算法(CIBR,continuum interpolated band algorithm)(De Jong,1998)和光谱吸收指数图像(SAI,spectral absorption index image)(王晋年等,1996)与相对吸收深度图方法类似,但引入了对称度因子,使其对吸收特征的描述更为合理。CIBR是利用诊断性光谱吸收谷中心的辐射值,除以左右肩部的辐射值与吸收特征对称度因子之积的和,产生相应的商图像,用以增强不同矿物的诊断性吸收深度,进行矿物识别。SAI方法与CIBR类似,也是对单个吸收波形肩部的特征增加了对称度因子。上述方法类似于常规比值或彩色增强处理。与常规增强处理最大不同之处在于有机地融入端元矿物的光谱特征这一先验知识,针对性、目的性更明确。由于大气辐射对遥感数据中波谱特征的影响、光谱混合形成的光谱漂移和变异对单个波形的影响,使识别结果含有较大的干扰。
成像光谱最大的优势在于利用有限细分的光谱波段,去再现象元对应物的波谱曲线。这样,利用整个光谱曲线进行矿物匹配识别,可以在一定程度上改善单个波形的不确定性影响(如光谱漂移、变异等),提高识别的精度。基于整个波形的识别技术方法是在参考光谱与象元光谱组成的二维空间中,合理地选择测度函数度量标准光谱或实测光谱与图像光谱的相似程度。例如,光谱匹配(SM,Spectral matching)(Baugh,et al.,1998)利用岩矿光谱矢量的欧氏距离测度函数,即求图像象元光谱与参考光谱在光谱空间中的差异大小。距离愈小,表示图像端元光谱或待识别的端元光谱与来自实验室或野外实测的参考光谱之间拟合程度愈高。类似地,相似指数(SI,similarity index algorithm)(Fenstermaker,et al.,1994)是基于欧氏距离侧度,根据已知地物类型的图像象元平均光谱与未知图像象元光谱的波段差值平方和的均值大小来识别地物。以上两种方法比基于单个吸收波形参数识别技术可靠。但往往由于光谱数据分辨率的影响,其光谱的差异不明显,同时又因欧氏距离测度固有的缺陷而难以对地物进行准确分类与识别。光谱角识别方法(SAM,spectral angle mapper)(Ben-Dor,et al.,1994;Crosta,et al.,1998;Drake,et al.,1998:Yuhas,et al.,1992)是在由岩矿光谱组成的多维光谱矢量空间,利用一个岩矿光谱矢量的角度测度函数求解岩矿参考光谱端元矢量(r)与图像象元光谱矢量(t)的相似程度。参考端元光谱既可来自实验室、野外测量,也可来自已知类别的图像象元光谱。根据两者相似程度大小,识别与提取矿化蚀变信息。该方法的难点在于如何合理地选择阈值进行信息分割。不过,从已有应用的角度看,该方法简单易行、比较可靠。交叉相关匹配(Fer-rier,et al.,1999;Varder Meer,et al.,1997)是使用一个相关因子(r.)作为相似性指数,通过逐象元交叉相关匹配进行矿物识别。当参考光谱与检验光谱完全匹配时,其位置m=0;参考光谱向长波方向移动时,其m<0。反之,m>0。在RGB空间,分别赋予斜度(skewness),t检验值与相关因子以R,G,B;若在“0”匹配位置,其斜度、t检验值与相关因子(r.)均接近于“1”而显示为白色,从而识别出端元矿物。对于矿物的智能识别,往往也采用完全谱形。例如,Tetracord矿物识别软件是基于UNIX平台,利用光谱数据库中的光谱与图像光谱拟合从而自动进行识别矿物;王润生等(1999)根据矿物的完全波形,利用神经网络进行矿物自动识别。以上方法在具有大量已知地物光谱时适应性强。对图像地物识别更有用。但明显不足是由于实际地物光谱变异、获取数据受观测角以及颗粒大小的影响而造成光谱变化,对于整体光谱特征差别不太大的地物,准确匹配比较困难,造成岩矿识别与分析上的混淆和误差。
基于光谱模型的识别的技术方法是建立在一定的光学、光谱学、结晶学和数学理论之上的信号处理技术方法。它不仅能够克服上述方法存在的缺陷,而且在识别地物类型的同时精确地量化地表物质的组成和其他的物理特性。例如,建立在Hapke光谱双向反射理论基础之上的线性混合光谱分解模型(SMA/SUM)(Adams,et al.,1986;Mustard,et al.,1987;Roberts,et al.,1997;Sabol,et al.,1992;Settle,et al.,1993;Shipman,et al.;1987:Shimabukuro,et al.,1991;Smith,et al.,1985),可以根据不同地物或者不同象元光谱反射率响应的差异,构造光谱线性分解模型。一个象元内并非存在单一类型地物,而更多地由不同类型地物组成。因此,在大多数情况下,象元光谱并非为纯地物光谱的线性混合,而更多地表现为非线性。对于单散射,可作为线性模型分解,多散射则认为非线性混合。由于平均单散射反照率丰度主要依赖于成分含量不同而可以认为是线性混合(Mustard,et al.,1987)。这样,通过单散射反照率(SSA)转换,即可以利用算子W=(3r+6)r/(1 +2r)2,将非线性“线性化”,再进行光谱分解。Tompkins(1996)提出修正的光谱混合分析(MSMA)模型。该模型利用虚拟端元,采用一个阻尼最小二乘算法,根据一定的先验知识,有效地并最终可以选择亚像端元进行光谱分解,提高了SMA实用性。与SMA相比,MSMA最大的不同表现在:①端元以及其丰度均作为未知变量;②对数据组中所有象元同时求解。对于能量约束最小模型(CEM,constrained en-ergy minimization technique)(Farrand,et al.,1997;Farrand,et al.,1996;Resmini,et al.,1997)是在成像光谱图像序列中,运用一个目标区域(或ROI区域,region of insteresting)与象元光谱(ri)相关的权系数wk来描述象元向量的数字值y,从而进行特征选择与分解进行地物识别与信息提取。与混合光谱分解模型一样,该分解结果在一定程度上,不仅代表了识别象元的类型信息,而且有机地表示了其丰度比值。与混合光谱分解模型不同的是,该方法更多地依赖于目标区域的统计特征,但结果更精确。总之,这些方法更多地依赖光谱学知识与数理方法,在实际应用中由于难以确定特征参数或难以准确地描述光谱模型而限制了该类技术方法的应用。不过,由于该类方法在识别地物的同时量化物质组成,因此就其发展趋势而言,随着一系列技术的成熟与光谱学、结晶学等知识的深入发展,识别精度的改善与量化能力的提高,其应用将会越来越广泛。
国内也相继开展了一些成像光谱进行矿物直接识别应用试验,但由于国产传感器的性能尚不够完善,数据信噪比较低。但在定性岩矿识别方面取得了一定的收获。如甘甫平等(2000)利用基于波形特征组合的主成分分析有效地对河北张家口后沟金矿区进行了岩性划分;刘庆生(1999)利用对应分析提取出内蒙古某矿区的含金蚀变。在直接定量矿化识别、识别模型和识别谱系等方面都落后于美国等发达国家,相比还存在一定差距。
总之,岩矿光谱学机理研究、遥感信息提取基础与遥感信息提取方法技术研究,三者之间相辅相成,具有一定的对应关系。
遥感地物光谱应用基础与遥感影像信息提取技术研究随着遥感光谱成像技术的发展而发展,两者研究方向与趋势都主要集中在光谱特征知识与地物物理化学属性的关联以及光谱物理模型两大方面。对地物物化属性与光谱特征的相关性和对光谱物理模型的深入分析与研究可从不同的角度为遥感直接识别矿物、提取地物的分布规律、属性、物化性质以及进行地物深层次信息挖掘等提供理论基础支撑,推动遥感应用技术的发展。遥感地学应用的实用化与产业化是遥感地物光谱应用基础与遥感地物影响信息提取技术研究相互促进的结果。
地物光谱学机理研究、遥感信息提取基础与遥感信息提取方法技术研究的发展将导致三者的结合,并最终综合于遥感应用模型和技术集成中,以便充分利用各自的优势,提高遥感应用能力并增强对地质应用的理解,以及模拟、评估和预测地学发展的规律。