Ⅰ 什么是公理方法和公理体系
公理是依据人类理性的不证自明的基本事实,经过人类长期反复实践的考验,不需要再加证明的基本命题。除了重言式之外,没有任何事物可被推导,若没有任何事物被假定的话。公理即是导出特定一套演绎知识的基本假设。
公理不证自明,而所有其他的断言(若谈论的是数学,则为定理)则都必须借助这些基本假设才能被证明。
然而,对数学知识的解释从古至今已不太一样,且最终“公理”这一词对今日的数学家眼中和在亚里斯多德和欧几里得眼中的意思也有了些许的不同。
古希腊人认为几何学也是数种科学的其中之一,且视几何学的定理和科学事实有同等地位。他们发展并使用逻辑演绎方法来作为避免错误的方法,并以此来建构及传递知识。亚里斯多德的后分析篇是对此传统观点的一决定性的阐述。
(1)什么是公理方法和公理体系扩展阅读
公理化的实现就是:
①从其诸多概念中挑选出一组初始概念,该理论中的其余概念,都由初始概念通过定义引入,称为导出概念;
②从其一系列命题中挑选出一组公理,而其余的命题,都应用逻辑规则从公理推演出来,称为定理。应用逻辑规则从公理推演定理的过程称为一个证明,每一定理都是经由证明而予以肯定的。
由初始概念、导出概念、公理以及定理构成的演绎体系,称为公理系统。初始概念和公理是公理系统的出发点。
公理系统相应地区分为古典公理系统、现代公理系统或称形式公理系统。最有代表性的古典公理系统是古希腊数学家欧几里得在《几何原本》一书中建立的。
第一个现代公理系统是D.希尔伯特于1899年提出的。他在《几何基础》一书中,不仅建立了欧几里得几何的形式公理系统,而且也解决了公理方法的一些逻辑理论问题。
例如欧几里德《几何原本》中就规定了五条公理和五条公设(以现代观点来看,公设也是公理),平面几何中的一切定理都可由这些公理和公设推导而得。