导航:首页 > 研究方法 > 大量数据分析方法

大量数据分析方法

发布时间:2024-05-22 05:20:38

1. 最常用的四种大数据分析方法哪些

1.描述型分析:发生了什么?

这是最常见的分析方法。在业务中,这种方法向数据分析师提供了重要指标和业务的衡量方法。

例如,每月的营收和损失账单。数据分析师可以通过这些账单,获取大量的客户数据。了解客户的地理信息,就是“描述型分析”方法之一。利用可视化工具,能够有效的增强描述型分析所提供的信息。

2.诊断型分析:为什么会发生?

描述性数据分析的下一步就是诊断型数据分析。通过评估描述型数据,诊断分析工具能够让数据分析师深入地分析数据,钻取到数据的核心。

良好设计的BI dashboard能够整合:按照时间序列进行数据读入、特征过滤和钻取数据等功能,以便更好的分析数据。

3.预测型分析:可能发生什么?

预测型分析主要用于进行预测。事件未来发生的可能性、预测一个可量化的值,或者是预估事情发生的时间点,这些都可以通过预测模型来完成。

预测模型通常会使用各种可变数据来实现预测。数据成员的多样化与预测结果密切相关。

在充满不确定性的环境下,预测能够帮助做出更好的决定。预测模型也是很多领域正在使用的重要方法。

4.指令型分析:需要做什么?

数据价值和复杂度分析的下一步就是指令型分析。指令模型基于对“发生了什么”、“为什么会发生”和“可能发生什么”的分析,来帮助用户决定应该采取什么措施。通常情况下,指令型分析不是单独使用的方法,而是前面的所有方法都完成之后,最后需要完成的分析方法。

例如,交通规划分析考量了每条路线的距离、每条线路的行驶速度、以及目前的交通管制等方面因素,来帮助选择最好的回家路线。

2. 常用的大数据分析方法

1. Analytic Visualizations(可视化分析)

不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。

2. Data Mining Algorithms(数据挖掘算法)
可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。

3. Predictive Analytic Capabilities(预测性分析能力)
数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。

4. Semantic Engines(语义引擎)
由于非结构化数据的多样性带来了数据分析的新的挑战,需要一系列的工具去解析,提取,分析数据。语义引擎需要被设计成能够从“文档”中智能提取信息。

5. Data Quality and Master Data Management(数据质量和数据管理)

数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。

3. 最常用的大数据分析方法有哪些

1、对比分析

对比分析法不管是从生活中还是工作中,都会经常用到,对比分析法也称比较分析法,是将两个或两个以上相互联系的指标数据进行比较,分析其变化情况,了解事物的本质特征和发展规律。


在数据分析中,常用到的分3类:时间对比、空间对比以及标准对比。


2、漏斗分析


转化漏斗分析是业务分析的基本模型,最常见的是把最终的转化设置为某种目的的实现,最典型的就是完成交易。


其中,我们往往关注三个要点:


①从开始到结尾,整体的转化效率是多少?


②每一步的转化率是多少?


③哪一步流失最多,原因在什么地方?流失的用户符合哪些特征?


3、用户分析


用户分析是互联网运营的核心,常用的分析方法包括:活跃分析,留存分析,用户分群,用户画像,用户细查等。


可将用户活跃细分为浏览活跃,互动活跃,交易活跃等,通过活跃行为的细分,掌握关键行为指标;通过用户行为事件序列,用户属性进行分群,观察分群用户的访问,浏览,注册,互动,交易等行为,从而真正把握不同用户类型的特点,提供有针对性的产品和服务。


4、指标分析


在实际工作中,这个方法应用的最为广泛,也是在使用其他方法进行分析的同时搭配使用突出问题关键点的方法,指直接运用统计学中的一些基础指标来做数据分析,比如平均数、众数、中位数、最大值、最小值等。在选择具体使用哪个基础指标时,需要考虑结果的取向性。


5、埋点分析


只有采集了足够的基础数据,才能通过各种分析方法得到需要的分析结果。


通过分析用户行为,并细分为:浏览行为,轻度交互,重度交互,交易行为,对于浏览行为和轻度交互行为的点击按钮等事件,因其使用频繁,数据简单,采用无埋点技术实现自助埋点,即可以提高数据分析的实效性,需要的数据可立即提取,又大量减少技术人员的工作量,需要采集更丰富信息的行为。

4. 海量数据分析处理方法

海量数据分析处理方法
一、Bloom filter
适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集
基本原理及要点:
对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就是 counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。
还有一个比较重要的问题,如何根据输入元素个数n,确定位数组m的大小及hash函数个数。当hash函数个数k=(ln2)*(m/n)时错误率最小。在错误率不大于E的情况下,m至少要等于n*lg(1/E)才能表示任意n个元素的集合。但m还应该更大些,因为还要保证bit数组里至少一半为0,则m应该>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2为底的对数)。
举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。这样k大概是8个。
注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。通常单个元素的长度都是有很多bit的。所以使用bloom filter内存上通常都是节省的。
扩展:
Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filter(CBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作。Spectral Bloom Filter(SBF)将其与集合元素的出现次数关联。SBF采用counter中的最小值来近似表示元素的出现频率。
问题实例:给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL。如果是三个乃至n个文件呢?
根据这个问题我们来计算下内存的占用,4G=2^32大概是40亿*8大概是340亿,n=50亿,如果按出错率0.01算需要的大概是650亿个bit。现在可用的是340亿,相差并不多,这样可能会使出错率上升些。另外如果这些urlip是一一对应的,就可以转换成ip,则大大简单了。
二、Hashing
适用范围:快速查找,删除的基本数据结构,通常需要总数据量可以放入内存
基本原理及要点:
hash函数选择,针对字符串,整数,排列,具体相应的hash方法。
碰撞处理,一种是open hashing,也称为拉链法;另一种就是closed hashing,也称开地址法,opened addressing。
扩展:
d-left hashing中的d是多个的意思,我们先简化这个问题,看一看2-left hashing。2-left hashing指的是将一个哈希表分成长度相等的两半,分别叫做T1和T2,给T1和T2分别配备一个哈希函数,h1和h2。在存储一个新的key时,同时用两个哈希函数进行计算,得出两个地址h1[key]和h2[key]。这时需要检查T1中的h1[key]位置和T2中的h2[key]位置,哪一个位置已经存储的(有碰撞的)key比较多,然后将新key存储在负载少的位置。如果两边一样多,比如两个位置都为空或者都存储了一个key,就把新key存储在左边的T1子表中,2-left也由此而来。在查找一个key时,必须进行两次hash,同时查找两个位置。
问题实例:
1).海量日志数据,提取出某日访问网络次数最多的那个IP。
IP的数目还是有限的,最多2^32个,所以可以考虑使用hash将ip直接存入内存,然后进行统计。
三、bit-map
适用范围:可进行数据的快速查找,判重,删除,一般来说数据范围是int的10倍以下
基本原理及要点:使用bit数组来表示某些元素是否存在,比如8位电话号码
扩展:bloom filter可以看做是对bit-map的扩展
问题实例:
1)已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。
8位最多99 999 999,大概需要99m个bit,大概10几m字节的内存即可。
2)2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。
将bit-map扩展一下,用2bit表示一个数即可,0表示未出现,1表示出现一次,2表示出现2次及以上。或者我们不用2bit来进行表示,我们用两个bit-map即可模拟实现这个2bit-map。
四、堆
适用范围:海量数据前n大,并且n比较小,堆可以放入内存
基本原理及要点:最大堆求前n小,最小堆求前n大。方法,比如求前n小,我们比较当前元素与最大堆里的最大元素,如果它小于最大元素,则应该替换那个最大元素。这样最后得到的n个元素就是最小的n个。适合大数据量,求前n小,n的大小比较小的情况,这样可以扫描一遍即可得到所有的前n元素,效率很高。
扩展:双堆,一个最大堆与一个最小堆结合,可以用来维护中位数。
问题实例:
1)100w个数中找最大的前100个数。
用一个100个元素大小的最小堆即可。
五、双层桶划分-—其实本质上就是【分而治之】的思想,重在分的技巧上!
适用范围:第k大,中位数,不重复或重复的数字
基本原理及要点:因为元素范围很大,不能利用直接寻址表,所以通过多次划分,逐步确定范围,然后最后在一个可以接受的范围内进行。可以通过多次缩小,双层只是一个例子。
扩展:
问题实例:
1).2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。
有点像鸽巢原理,整数个数为2^32,也就是,我们可以将这2^32个数,划分为2^8个区域(比如用单个文件代表一个区域),然后将数据分离到不同的区域,然后不同的区域在利用bitmap就可以直接解决了。也就是说只要有足够的磁盘空间,就可以很方便的解决。
2).5亿个int找它们的中位数。
这个例子比上面那个更明显。首先我们将int划分为2^16个区域,然后读取数据统计落到各个区域里的数的个数,之后我们根据统计结果就可以判断中位数落到那个区域,同时知道这个区域中的第几大数刚好是中位数。然后第二次扫描我们只统计落在这个区域中的那些数就可以了。
实际上,如果不是int是int64,我们可以经过3次这样的划分即可降低到可以接受的程度。即可以先将int64分成2^24个区域,然后确定区域的第几大数,在将该区域分成2^20个子区域,然后确定是子区域的第几大数,然后子区域里的数的个数只有2^20,就可以直接利用direct addr table进行统计了。
六、数据库索引
适用范围:大数据量的增删改查
基本原理及要点:利用数据的设计实现方法,对海量数据的增删改查进行处理。
七、倒排索引(Inverted index)
适用范围:搜索引擎,关键字查询
基本原理及要点:为何叫倒排索引?一种索引方法,被用来存储在全文搜索下某个单词在一个文档或者一组文档中的存储位置的映射。
以英文为例,下面是要被索引的文本: T0 = “it is what it is” T1 = “what is it” T2 = “it is a banana”
我们就能得到下面的反向文件索引:
“a”: {2} “banana”: {2} “is”: {0, 1, 2} “it”: {0, 1, 2} “what”: {0, 1}
检索的条件”what”,”is”和”it”将对应集合的交集。
正向索引开发出来用来存储每个文档的单词的列表。正向索引的查询往往满足每个文档有序频繁的全文查询和每个单词在校验文档中的验证这样的查询。在正向索引中,文档占据了中心的位置,每个文档指向了一个它所包含的索引项的序列。也就是说文档指向了它包含的那些单词,而反向索引则是单词指向了包含它的文档,很容易看到这个反向的关系。
扩展:
问题实例:文档检索系统,查询那些文件包含了某单词,比如常见的学术论文的关键字搜索。
八、外排序
适用范围:大数据的排序,去重
基本原理及要点:外排序的归并方法,置换选择败者树原理,最优归并树
扩展:
问题实例:
1).有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16个字节,内存限制大小是1M。返回频数最高的100个词。
这个数据具有很明显的特点,词的大小为16个字节,但是内存只有1m做hash有些不够,所以可以用来排序。内存可以当输入缓冲区使用。
九、trie树
适用范围:数据量大,重复多,但是数据种类小可以放入内存
基本原理及要点:实现方式,节点孩子的表示方式
扩展:压缩实现。
问题实例:
1).有10个文件,每个文件1G,每个文件的每一行都存放的是用户的query,每个文件的query都可能重复。要你按照query的频度排序。
2).1000万字符串,其中有些是相同的(重复),需要把重复的全部去掉,保留没有重复的字符串。请问怎么设计和实现?
3).寻找热门查询:查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个,每个不超过255字节。
十、分布式处理 maprece
适用范围:数据量大,但是数据种类小可以放入内存
基本原理及要点:将数据交给不同的机器去处理,数据划分,结果归约。
扩展:
问题实例:
1).The canonical example application of MapRece is a process to count the appearances ofeach different word in a set of documents:
2).海量数据分布在100台电脑中,想个办法高效统计出这批数据的TOP10。
3).一共有N个机器,每个机器上有N个数。每个机器最多存O(N)个数并对它们操作。如何找到N^2个数的中数(median)?

5. 数据统计分析方法有哪些

1、分解主题分析


所谓分解主题分析,是指对于不同分析要求,我们可以初步分为营销主题、财务主题、灵活主题等,然后将这些大的主题逐步拆解为不同小的方面来进行分析。


2、钻取分析


所谓钻取分析,是指改变维的层次,变换分析的粒度。按照方向方式分为:向上和向下钻取。向上钻取是在某一维上将低层次的细节数据概括到高层次的汇总数据,或者减少维数;是自动生成汇总行的分析方法。向下钻取是从汇总数据深入到细节数据进行观察或增加新维的分析方法。


3、常规比较分析


所谓常规比较分析,是指一般比较常见的对比分析方法,例如有时间趋势分析、构成分析、同类比较分析、多指标分析、相关性分析、分组分析、象限分析等。


4、大型管理模型分析


所谓大型管理模型分析,是指依据各种成熟的、经过实践论证的大型管理模型对问题进行分析的方法。比较常见的大型管理模型分析包括RCV模型、阿米巴经营、品类管理分析等。


5、财务和因子分析


所谓财务和因子分析,主要是指因子分析法在财务信息分析上的广泛应用。因子分析的概念起源于20世纪初的关于智力测试的统计分析,以最少的信息丢失为前提,将众多的原有变量综合成较少的几个综合指标,既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失,达到有效的降维。比较常用的财务和因子分析法有杜邦分析法、EVA分析、财务指标、财务比率、坪效公式、品类公式、流量公式等。


6、专题大数据分析


所谓专题大数据分析,是指对特定的一些规模巨大的数据进行分析。大数据常用来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。常见特征是数据量大、类型繁多、价值密度低、速度快、时效低。比较常见的专题大数据分析有:市场购物篮分析、重力模型、推荐算法、价格敏感度分析、客户分组分析等分析方法。

阅读全文

与大量数据分析方法相关的资料

热点内容
产品成本计算方法概述教学设计 浏览:633
lamer神奇面霜使用方法 浏览:380
微软平板电脑救砖方法 浏览:908
人力分析有哪些方法 浏览:751
hb101活力素使用方法 浏览:647
水利基金计算方法 浏览:213
最简单的原点赞美方法 浏览:177
你有几种解决数学故事问题的方法 浏览:37
地砖可以用什么方法固定 浏览:696
葡萄虫最佳防治方法 浏览:138
方管简单的拼接方法 浏览:726
国足训练方法视频大全 浏览:295
华为手机快捷开关在哪里设置方法 浏览:57
低分化癌是怎么治疗方法 浏览:478
姬存希眼霜使用方法 浏览:318
铁锅的安装方法视频 浏览:929
蛋白铜的检测方法 浏览:532
猪瘟的微生物学诊断的方法和步骤 浏览:378
oppo手机充电头拆卸方法 浏览:628
skg4112美容仪使用方法 浏览:234