导航:首页 > 研究方法 > 超快铁性单晶的研究方法

超快铁性单晶的研究方法

发布时间:2024-05-16 16:50:24

⑴ 多晶与单晶区别

很多取向不同而机遇的单晶颗粒可以拼凑成多晶体. 也就是说多晶体是由单晶体组成的。

所谓单晶(monocrystal, monocrystalline, single crystal),即结晶体内部的微粒在三维空间呈有规律地、周期性地排列,或者说晶体的整体在三维方向上由同一空间格子构成,整个晶体中质点在空间的排列为长程有序。单晶整个晶格是连续的,具有重要的工业应用。由于熵效应导致了固体微观结构的不理想,例如杂质,不均匀应变和晶体缺陷,有一定大小的理想单晶在自然界中是极为罕见的,而且也很难在实验室中生产。另一方面,在自然界中,不理想的单晶可以非常巨大,例如已知一些矿物,如绿宝石,石膏,长石形成的晶体可达数米。
晶体简介

晶体概念
自然界中物质的存在状态有三种:气态、液态、固态
固体又可分为两种存在形式:晶体和非晶体
晶体是经过结晶过程而形成的具有规则的几何外形的固体;晶体中原子或分子在空间按一定规律周期性重复的排列。

性质
均 匀 性: 晶体内部各个部分的宏观性质是相同的。
各向异性: 晶体中不同的方向上具有不同的物理性质。
固定熔点: 晶体具有周期性结构,熔化时,各部分需要同样的温度。
规则外形: 理想环境中生长的晶体应为凸多边形。
对 称 性: 晶体的理想外形和晶体内部结构都具有特定的对称性。

分类
对晶体的研究,固体物理学家从成健角度分为
离子晶体
原子晶体
分子晶体
金属晶体
显微学则从空间几何上来分,有七大晶系,十四种布拉菲点阵,230种空间群,用拓扑学,群论知识去研究理解。可参考《晶体学中的对称群》一书 (郭可信,王仁卉着)。

晶粒
晶粒是另外一个概念,首先提出这个概念的是凝固理论。从液态转变为固态的过程首先要成核,然后生长,这个过程叫晶粒的成核长大。晶粒内分子、原子都是有规则地排列的,所以一个晶粒就是单晶。多个晶粒,每个晶粒的大小和形状不同,而且取向也是凌乱的,没有明显的外形,也不表现各向异性,是多晶。英文晶粒用Grain表示,注意与Particle是有区别的。
有了晶粒,那么晶粒大小(晶粒度),均匀程度,各个晶粒的取向关系都是很重要的组织(组织简单说就是指固体微观形貌特征)参数。对于大多数的金属材料,晶粒越细,材料性能(力学性能)越好,好比面团,颗粒粗的面团肯定不好成型,容易断裂。所以很多冶金学家材料科学家一直在开发晶粒细化技术。
科学总是喜欢极端,看得越远的镜子叫望远镜;看得越细的镜子叫显微镜。晶粒度也是这样的,很小的晶粒度我们喜欢,很大的我们也喜欢。最初,显微镜倍数还不是很高的时候,能看到微米级的时候,觉得晶粒小的微米数量是非常小的了,而且这个时候材料的力学性能特别好。人们习惯把这种小尺度晶粒叫微晶。然而科学总是发展的,有一天人们发现如果晶粒度再小呢,材料性能变得不可思议了,什么量子效应,隧道效应,超延展性等等很多小尺寸效应都出来了,这就是现在很热的,热得不得了的纳米,晶粒度在1nm-100nm之间的晶粒我们叫纳米晶。

准晶
准晶体的发现,是20世纪80年代晶体学研究中的一次突破。这是我们做电镜的人的功劳。1984年底,D.Shechtman等人宣布,他们在急冷凝固的Al Mn合金中发现了具有五重旋转对称但并无平移周期性的合金相,在晶体学及相关的学术界引起了很大的震动。不久,这种无平移同期性但有位置序的晶体就被称为准晶体。后来,郭先生一看,哇,我们这里有很多这种东西啊,抓紧分析,马上写文章,那段金属固体原子像的APL,PRL多的不得了,基本上是这方面的内容。准晶因此也被D.Shechtman称为“中国像”。
一般晶体不会有五次对称,只有1,2,3,4,6次旋转对称。所以看到衍射斑点是五次对称的,10对称的啊,其他什么的,可能就是准晶。

孪晶
英文叫twinning,孪晶其实是金属塑性变形里的一个重要概念。孪生与滑移是两种基本的形变机制。从微观上看,晶体原子排列沿某一特定面镜像对称。那个面叫孪晶面。很多教科书有介绍。一般面心立方结构的金属材料,滑移系多,易发生滑移,但是特定条件下也有孪生。加上面心立方结构层错能高,不容易出现孪晶,曾经一段能够在面心立方里发现孪晶也可以发很好的文章。前两年,马恩就因为在铝里面发现了孪晶,在科学杂志上发了篇论文。卢柯去年也因为在纳米铜里做出了很多孪晶,既提高了铜的强度,又保持了铜良好导电性(通常这是一对矛盾),也在科学杂志上发了篇论文。

单晶制备方法
单晶生长制备方法大致可以分为气相生长、溶液生长、水热生长、熔盐法、熔体法。最常见的技术有提拉法、坩埚下降法、区熔法、定向凝固法等;
目前除了众多的实际工程应用方法外,借助于计算机和数值计算方法的发展,也诞生了不同的晶体生长数值模拟方法。特别是生产前期的分析和优化大直径单晶时[1] ,数值计算尤为重要。
一、挥发法
原理:依靠溶液的不断挥发,使溶液由不饱和达到饱和过饱和状态[2] 。
条件:固体能溶解于较易挥发的有机溶剂理论上,所有溶剂都可以,但一般选择60~120℃[2] 。
注意:不同溶剂可能培养出的单晶结构不同方法:将固体溶解于所选有机溶剂,有时可采用加热的办法使固体完全溶解,冷却至室温或者再加溶剂使之不饱和,过滤,封口,静置培养[2] 。
二、扩散法
原理:利用二种完全互溶的沸点相差较大的有机溶剂。固体易溶于高沸点的溶剂,难溶或不溶于低沸点溶剂。在密封容器中,使低沸点溶剂挥发进入高沸点溶剂中,降低固体的溶解度,从而析出晶核,生长成单晶。液体等。一般选难挥发的溶剂,如DMF,DMSO,甘油甚至离子[2] 。
条件:固体在难挥发的溶剂中溶解度较大或者很大,在易挥发溶剂中不溶或难溶。经验:固体在难挥发溶剂中溶解度越大越好。培养时,固体在高沸点溶剂中必须达到饱和或接近过饱和[2] 。
方法:将固体加热溶解于高沸点溶剂,接近饱和,放置于密封容器中,密封容器中放入易挥发溶剂,密封好,静置培养[2] 。
三、温差法
原理:利用固体在某一有机溶剂中的溶解度,随温度的变化,有很大的变化,使其在高温下达到饱和或接近饱和,然后缓慢冷却,析出晶核,生长成单晶。一般,水,DMF,DMSO,尤其是离子液体适用此方法。条件:溶解度随温度变化比较大。经验:高温中溶解度越大越好,完全溶解。推广:建议大家考虑使用离子液体做溶剂,尤其是对多核或者难溶性的配合物[2] 。
四、接触法
原理:如果配合物极易由二种或二种以上的物种合成,选择性高且所形成的配合物很难找到溶剂溶解,则可使原料缓慢接触,在接触处形成晶核,再长大形成单晶。一般无机合成,快反应使用此方法[2] 。
方法:1.用U形管,可采用琼脂降低离子扩散速度。2.用直管,可做成两头粗中间细。3.用缓慢滴加法或稀释溶液法(对反应不很快的体系可采用)4.缓慢升温度(对温度有要求的体系适用)经验:原料的浓度尽可能的降低,可以人为的设定浓度或比例。0.1g~0.5g的溶质量即可[2] 。
五、高压釜法
原理:利用水热或溶剂热,在高温高压下,是体系经过一个析出晶核,生长成单晶的过程,因高温高压条件下,可发生许多不可预料的反应。方法:将原料按组合比例放入高压釜中,选择好溶剂,利用溶剂的沸点选择体系的温度,高压釜密封好后放入烘箱中,调好温度,反应1~4小时均可。然后,关闭烘箱,冷至室温,打开反应釜,观察情况按如下过程处理:1.没有反应——重新组合比例,调节条件,包括换溶剂,调pH值,加入新组分等。2.反应但全是粉末,且粉末什么都不溶解,首先从粉末中挑选单晶或晶体,若不成,A:改变条件,换配体或加入新的盐,如季铵盐,羧酸盐等;B:破坏性实验,设法使其反应变成新物质。3.部分固体,部分在溶液中:首先通过颜色或条件变化推断两部分的大致组分,是否相同组成,固体挑单晶,溶液挥发培养单晶,若组成不同固体按1或2的方法处理。4.全部为溶液——旋蒸得到固体,将固体提纯,将主要组成纯化,再根据特点接上述四种单晶培养方法培养单晶[2] 。

单晶和多晶区别
单晶硅和多晶硅的区别是,当熔融的单质硅凝固时,硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则形成单晶硅。如果这些晶核长成晶面取向不同的晶粒,则形成多晶硅。多晶硅与单晶硅的差异主要表现在物理性质方面。例如在力学性质、电学性质等方面,多晶硅均不如单晶硅。多晶硅可作为拉制单晶硅的原料。单晶硅可算得上是世界上最纯净的物质了,一般的半导体器件要求硅的纯度六个9以上。大规模集成电路的要求更高,硅的纯度必须达到九个9。目前,人们已经能制造出纯度为十二个9的单晶硅。单晶硅是电子计算机、自动控制系统等现代科学技术中不可缺少的基本材料[3] 。
多晶硅的生产工艺主要由高纯石英(经高温焦碳还原)→工业硅(酸洗)→硅粉(加HCL)→SiHCL3(经过粗馏精馏)→高纯SiHCL3(和H2反应CVD工艺)→高纯多晶硅[3] 。

市场优势
统计数据显示,2013年全球单晶装机约8.5-9GW,占全球光伏装机的22%-23%,相比2012年占比基本维持平稳。但是,如果不考虑中国市场主要使用多晶拉低了整体水平的因素,则单晶占比超过30%,相比2012年25%左右的水平明显提升。
日本和美国是支撑去年单晶需求的两大主要市场。在日本,受益于高电价补贴政策,2013年光伏装机大幅增长,全年装机7.5GW,同比增长204%。其中,单晶装机2.48GW,同比增长130.43%。美国方面,2013年实现装机4.75GW,同比增长41.02%,单晶约占总装机量的31%。
业内人士介绍,在分布式光伏发电上,使用单晶的优势十分突出。“比如建相同功率的电站,单晶使用的电池片更少,这就降低了安装、调试、配件等非组件成本。所以在非组件成本占整体电站成本比例高的地方,一般会选用单晶。比如日本,非组件成本比中国高两倍,所以电站建造过程中主要目的是降低非组件成本,而不是组件成本。”上述电站投资人表示。
此外,由于分布式光伏电站都是建立在面积有限的屋顶,在单位面积上能够发出更多的电将直接决定屋顶电站的收益,因此在单位面积上效率更高的单晶电池将更具有吸引力。
随着去年国家有关分布式光伏发电上网补贴价格正式落地,分布式光伏发电的发展骤然升温。
今年1月,国家能源局公布今年国内光伏新增装机目标为14GW,其中分布式光伏电站为8GW、地面电站6GW,正式宣告我国分布式光伏发电应用的大规模启动。
吴新雄日前在嘉兴分布式光伏会议上表示,年初已将2014年新增备案规模下达到各地区,各地方要加大执行力度,力争全年光伏发电新增并网容量达到13GW以上。
与此同时,今年政府持续出台了多项政策支持分布式光伏的发展,尤其是近期国家能源局发布的《关于进一步落实分布式光伏发电有关政策的通知》,将有望带动国内分布式光伏发电的快速发展。
国内光伏终端市场主要以西部地区大型地面电站为主,存在大规模开发就地消纳困难和电力长距离输送损耗较高等问题,而中、东部地区发展分布式光伏发电,易于就地消纳,且网购电价高、度电补贴需求低,应用推广的经济性更高,因此,大力推进分布式光伏发电是拓展国内光伏市场的有效途径。

单晶数值模拟
工程背景:
1、提拉法[4]
2、定向凝固法[5]
3、区熔法[6]
涉及到的问题:
1、传热、传质、湍流、热辐射等[7] ;
2、准稳态、动态问题;
3、存在急剧扩散、粘性、辐射、热边界层问题;
4、缺陷预测等[8] ;
数学模型:
热流和掺杂物的输运由动量守恒、能量守恒和质量守恒方程描述。
提拉法数值模拟

⑵ 矿物学的研究方法

野外研究方法包括矿物的野外地质产状调查和矿物样品的采集。室内研究方法很多。手标本的肉眼观察,包括双目显微镜下观察和简易化学试验,是矿物研究必要的基础。偏光和反光显微镜观察包括矿物基本光学参数的测定广泛用于矿物种的鉴定。矿物晶体形态的研究方法包括用反射测角仪进行晶体测量和用干涉显微镜、扫描电子显微镜对晶体表面微形貌的观察。检测矿物化学成分的方法有光谱分析,常规的化学分析,原子吸收光谱、激光光谱、X射线荧光光谱和极谱分析,电子探针分析,中子活化分析等。在物相分析和矿物晶体结构研究中,最常用的方法是粉晶和单晶的X射线分析,用作物相鉴定,测定晶胞参数、空间群和晶体结构。
此外,还有红外光谱用作结构分析的辅助方法,测定原子基团;以穆斯堡尔谱测定铁等的价态和配位;用可见光吸收谱作矿物颜色和内部电子构型的定量研究;以核磁共振测定分子结构;以顺磁共振测定晶体结构缺陷(如色心);以热分析法研究矿物的脱水、分解、相变等。透射电子显微镜的高分辨性能可用来直接观察超微结构和晶格缺陷等,在矿物学研究中日益得到重视。为了解决某方面专门问题,还有一些专门的研究方法,如包裹体研究法,同位素研究法等。矿物作为材料,还根据需要作某方面的物理化学性能的试验(见地质仪器)。
矿物是结晶物质,具有晶体的各种基本属性。因此,结晶学与化学、物理学一起,都是矿物学的基础。历史上,结晶学就曾是矿物学的一个组成部分。矿物本身是天然产出的单质或化合物,同时又是组成岩石和矿石的基本单元,因此矿物学是岩石学、矿床学的基础,并与地球化学、宇宙化学都密切相关。

⑶ 鉴定和研究矿物的其他主要方法简介

鉴定和研究矿物的方法,随工作目的和要求的不同而异(表16-1)。不同的方法各有其特点,它们对样品的要求及所能解决的问题也各不相同。下面仅介绍某些重要方法的简要特点。

1.成分分析方法

此类方法所得结果即为物质的化学成分数据。除经典化学分析系化学方法外,其他常用方法均属物理方法,大多可同时分析多种元素,但一般不能区分变价元素的价态。

1)经典化学分析

此法准确度高,但灵敏度不很高,分析周期长,很不经济。样品要求是重量超过500mg的纯度很高的单矿物粉末。

此法只适用于矿物的常量组分的定性和定量分析。主要用于新矿物种或亚种的详细成分的确定和组成可变的矿物成分变化规律的研究。但不适用于稀土元素的分析。

表16-1 鉴定和研究矿物的主要方法一览表

2)光谱分析

此法准确度较差(尤其是对含量大于3%的常量元素),但灵敏度高,且快速、经济。可测元素达70多种。一次测试即能获得全部主要元素及微量元素的信息。样品要求:仅需数十毫克甚至数毫克的粉末样品。

光谱分析通常用于矿物的微量和痕量元素的定性或半定量分析。特别是对于稀有分散元素也能获得良好的效果。常作为化学分析的先导,以初步了解样品中元素的种类和数量,供进一步分析或研究时参考。

3)原子吸收光谱分析

原子吸收光谱(AAS)分析灵敏度高,干扰少,快速、精确且较经济。可测70多种元素,但一次只能分析一种元素,不宜于定性分析。样品用量少,仅需数毫克粉末样。

AAS主要用于10-6数量级微量元素和10-9数量级痕量元素的定量测定。适宜于测定沸点低、易原子化的金属元素及部分半金属元素。也可进行常量分析。但对稀土、Th、Zr、Hf、Nb、Ta、W、U、B等高温元素的测定的灵敏度较低,对卤族元素、P、S、O、N、C、H等尚不能测定或效果不佳。

4)X射线荧光光谱分析

X射线荧光光谱(XRF)分析准确度较高,成本低,速度快,可不破坏样品。可分析元素的范围为9F~92U。XRF要求数克至十克(一般4~5g,最少可至数十毫克)较纯的粉末样。液态样品也可分析。

XRF用于常量元素和微量元素的定性或定量分析。尤其对稀土元素及稀有元素Nb、Ta、Zr、Hf等的定量分析有效。但不能测定变价元素的价态。

5)等离子体发射光谱分析

等离子体发射光谱(ICP)分析比光谱分析更为快速和灵敏,检测下限可达(0.1×10-9)~(10×10-9)。精度较高,可达±3%,可测定除H、O、N和惰性气体以外的所有元素。样品要求:粉末,最少可以数毫克,也可以为液态样品。

ICP适用于常量、微量和痕量元素的定性或定量分析。特别宜于分析包裹体中含量极低的重金属离子。

6)激光显微光谱分析

激光显微光谱(LMES)分析灵敏度高,快速,有效,成本低,且被破坏样品的面积小。可测70多种元素。样品可以是光片、不加盖玻璃的薄片或大小合适的手标本,样品表面应抛光,切忌被污染;重砂、粉末或液体样品要作某些处理。

LMES适于微粒、微量、微区的成分测定。用于研究矿物的化学成分及元素的赋存状态,特别适用于微细疑难矿物的分析和鉴定。但是,目前对O、N、S等许多非金属元素尚无法分析,对碱金属、难熔金属(如Mo、Ta等)的检测灵敏度较低。

7)质谱分析

质谱分析灵敏度和准确度均高,且分析速度快。以纯度≥98%、粒径<0.5mm的单矿物为样品。样量视矿物种不同而异,如硫化物需0.1~0.2g,硫酸盐需2~5g。应避免用化学方法、浮选法等处理分离矿物,以防被污染。

质谱分析系10-6数量级定量分析,常用于准确测定各种岩石、矿物和有机物中元素的同位素组成。从10~30g的陨石标本中提取的稀有气体即足以为分析所用。

8)中子活化分析

中子活化分析(NAA)灵敏度高,大多数元素的灵敏度达10-6~10-13g。准确度高,精度高(一般在±1%~±5%)。可测的元素达80多种。可同时测定多种元素,分析速度快,且不破坏样品。样品要求是纯的单矿物粉末,样量仅需数毫克至数十毫克。

NAA系超痕量、痕量、半微量甚至常量元素的定量分析。可直接测定浓度很低的贵金属元素,对稀土元素的分析特别有效。广泛用于同位素组成、同位素地质年龄的测定。此外,也常用于测定包裹体成分。适用于分析陨石和月岩样品的组成。

9)电子探针分析

电子探针分析(EPMA)灵敏度高,检测下限可达10-16g。精度一般可达1%~2%,但对微量元素的精度则可差于20%。分辨率高(约7nm)。放大倍数为数十倍至数十万倍。分析速度快,直观,且不破坏样品。可测元素的范围大:波谱分析为4Be~92U,能谱分析为11Na~92U。样品可以是光片、不加盖玻璃的薄片或矿物颗粒,且表面必须清洁、平坦而光滑。

EPMA系微米数量级微区的成分分析,宜于常量元素的定量分析。既可定点作定性或定量分析,又能作线扫描和面扫描分析,以研究元素的种类、分布和含量,了解矿物成分分布的均匀程度和元素在矿物中的赋存状态,定量测定矿物内部各环带的成分。最适于微小矿物和包裹体成分的定性或定量分析,以及稀有元素、贵金属元素的赋存状态的研究。此外,还可辅以形貌观察。EP-MA只能分析固态物质,对有机物质的分析有困难;不能分析元素的同位素、各种形式的水(如 H2 O和 OH-等)及其他挥发组分,无法区分 Fe2+和 Fe3+

2.结构分析方法

此类方法一般不破坏样品,其分析结果是各种谱图,用于研究物质的晶体结构、分子结构、原子中电子状态的精细结构。有些还可借以鉴定样品的物相,如宝石学上目前常利用红外吸收光谱、激光拉曼光谱、可见光吸收光谱等技术来鉴别天然宝石和合成宝石。

1)X射线分析

X射线分析是晶体结构研究和物相分析的最常用而有效的方法。其具体方法种类繁多,一般可归为单晶法和粉晶法两类。

(1)单晶法:通常称为X射线结构分析,又有照相法和衍射仪法之分。目前主要采用四圆单晶衍射仪法,其特点是自动化程度高,快速,准确度高。单晶法要求严格挑选无包裹体、无双晶、无连晶和无裂纹的单晶颗粒样品,其大小一般在0.1~0.5mm。因此在应用上受到一定限制。单晶法主要用于确定晶体的空间群,测定晶胞参数、各原子或离子在单位晶胞内的坐标、键长和键角等;也可用于物相鉴定,绘制晶体结构图。

(2)粉晶法:又称粉末法,也有照相法和衍射仪法之分。粉晶法以结晶质粉末为样品,可以是含少数几种物相的混合样品,粒径一般在1~10μm。样品用量少,且不破坏样品。照相法只需样品5~10mg,最少可至1mg左右;衍射仪法用样量一般为200~500mg。粉晶衍射仪法简便,快速,灵敏度高,分辨能力强,准确度高。根据计数器自动记录的衍射图(diffraction diagram),能很快查出面网间距d值和直接得出衍射强度,故目前已广泛用于矿物或混合物之物相的定性或定量分析。粉晶法主要用于鉴别结晶质物质的物相,精确测定晶胞参数,尤其对鉴定粘土矿物及确定同质多象变体、多型、结构的有序—无序等特别有效。

2)红外吸收光谱分析

红外吸收光谱(IR)测谱迅速,数据可靠,特征性强。傅里叶变换红外光谱仪具有很高的分辨率和灵敏度及很快的扫描速度。样品不受物理状态限制,可以是气态、液态、结晶质、非晶质或有机化合物。干燥固体样品一般只需1~2mg,并研磨成2μm左右的样品。

IR已广泛应用于物质的分子结构和成分研究。适用于研究不同原子的极性键,可精确测定分子的键长、键角、偶极矩等参数;推断矿物的结构,鉴定物相;对研究矿物中水的存在形式、络阴离子团、类质同象混入物的细微变化、有序—无序及相变等十分有效。IR广泛用于粘土矿物和沸石族矿物的鉴定,也可对混入物中各组分的含量作定量分析。

3)激光拉曼光谱分析

激光拉曼光谱(LRS)系无损分析,其测谱速度快,谱图简单,谱带尖锐,便于解释。几乎在任何物理条件(高压、高温、低温)下对任何材料均可测得其拉曼光谱。样品可以是粉末或单晶(最好是5mm或更大者),不需特别制备,粉末所需量极少,仅0.5μg即可。也可以是液体样品(10-6ml)。

LRS和IR同为研究物质分子结构的重要手段,两者互为补充。LRS适用于研究同原子的非极性键的振动。

4)可见光吸收光谱分析

可见光吸收光谱分析简便、可信,不需挑选单矿物,不破坏样品。以0.03mm标准厚度的薄片为样品,但研究多色性时则需用单晶体。

此法主要用于研究物质中过渡元素离子的电子构型、配位态、晶体场参数和色心等。也常用于颜色的定量研究,探讨透明矿物的呈色机理。可适于研究细小(粒径在1~5mm)的矿物颗粒。

5)穆斯堡尔谱分析

穆斯堡尔谱分析又称核磁伽马共振(NGR)。分析准确、灵敏、快速,解谱较为容易。目前仅可测40多种元素近90种同位素。所研究的元素可以是主成分,也可是含量为万分之几的杂质。样品可以是晶质或者非晶质;既可是单晶,也可是矿物或岩石的粉末。但样品中必须含有一定浓度的与放射源中γ射线的核相同的元素。含铁矿物样品中Fe原子浓度为5mg/cm2为宜,硅酸盐样品量一般为100mg左右,因样品中Fe含量等因素而异。

NGR主要用于研究57Fe和119Sn元素离子的价态、配位态、自旋态、键性、磁性状态、占位情况及物质结构的有序—无序和相变等,也可用于物相鉴定和快速成分分析。对粘土矿物及陨石、月岩、海底沉积物等晶质多相混合物的研究很有效。

6)电子顺磁共振分析

电子顺磁共振(EPR)分析也称电子自旋共振(ESR)分析。灵敏度高。不破坏样品。只适于研究顺磁性离子:室温下能测定的主要有V4+、Cr3+、Mn2+、Fe3+、Ni2+、Cu2+、Eu2+、Gd3+等;而Ti3+、V3+、Fe2+、Co2+及多数稀土元素离子则只能在低温下测定。EPR分析对样品要求不高:固体、液体(0.1~0.01ml)、压缩气体或有机化合物均可;可以是单晶,也可以是粉末多晶混合物,但一般以单晶(粒径在2~9mm)为好。样品中顺磁性离子的浓度不超过1%,以0.1%~0.001%为宜。样品不需任何处理。

EPR主要用于研究过渡金属离子(包括稀土元素离子)的微量杂质的价态、键性、电子结构、赋存状态、配位态、占位情况、类质同象置换及结构的电子—空穴心、结构的有序—无序、相变等。也可作微量元素的定性或定量分析及地质年龄的测定等。在宝石学上,常用于鉴别天然宝石与合成宝石及研究宝石的染色机制。

7)核磁共振分析

核磁共振(NMR)分析目前最常用的高分辨的核磁共振仪广泛应用于某些分子结构的测定,其分辨率高,灵敏度高,测量速度快。但可测元素的种类有限,主要有1H、7Li、9B、11B、13C、19F、23Na、27Al、29Si、31P、40Ca等。样品可以是较浓的溶液(约0.5ml)、固体(一般20~80mg)或气体。

NMR主要用于研究矿物中水的存在形式、质子的结构位置及离子的键性、配位态和有序—无序分布特征等,研究相变和晶格缺陷。

3.其他测试方法

1)透射电子显微镜分析

透射电子显微镜(TEM)分析的功能主要是利用透射电子进行高分辨的图象观察,以研究样品的形貌、晶格缺陷及超显微结构(如超显微双晶和出溶片晶等)等特征,同时用电子衍射花样标定晶体的结构参数和晶体取向等。配有能谱仪(或波谱仪)者尚可进行微区常量元素的成分分析。TEM具有很高的分辨率(达0.1nm左右)和放大倍数(为100倍~200万倍),可以直接观察到原子。样品可以是光片、不加盖玻璃的薄片或粉末样,表面须平坦光滑。

2)扫描电子显微镜分析

扫描电子显微镜(SEM)分析的主要功能是利用二次电子进行高分辨率的表面微形貌观察。通常也辅以微区常量元素的点、线、面扫描定性和定量分析,查明元素的赋存状态等。SEM的分辨率高(达5nm左右),放大倍数为10倍~30万倍。样品可以是光片、不加盖玻璃的薄片、粉末颗粒或手标本。其制样简单,图象清晰,立体感强,特别适合粗糙表面的研究,如矿物的断口、晶面的生长纹和阶梯等观察及显微结构分析等。

3)微分干涉(相衬)显微镜分析

微分干涉(相衬)显微镜(DIC)能够观察矿物表面纳米数量级的分子层厚度。反射型显微镜用于研究晶体表面微形貌,观察晶体表面上的各种层生长纹和螺旋生长纹,从而探讨晶体的生长机制;透射型显微镜用于研究岩石薄片中矿物的结晶状态及内部显微构造,能清晰看到微米数量级的微裂纹,从而有助于研究岩石受应力作用的方向和性质。微分干涉(相衬)显微镜的纵向分辨率高,立体感强。其样品可以是带晶面的晶体颗粒或者薄片。

4)热分析

热分析系根据矿物在加热过程中所发生的热效应或重量变化等特征来鉴定和研究矿物。广泛采用的有差热分析和热重分析。

(1)差热分析(DTA):是测定矿物在连续加热过程中的吸热(脱水、分解、晶格的破坏和类质同象转变等)和放热(氧化、结晶等)效应,以研究矿物的结构和成分变化。用于了解水的存在形式,研究物质的内部结构和结晶度,研究类质同象混入物及其含量,可进行物相的鉴定及其定量分析。尤其对粘土矿物、氢氧化物和其他含水矿物及碳酸盐类等矿物的研究最为有效。DTA只适用于受热后有明显的物理、化学变化的物质,一般仅用于单相物质纯样的研究,样量仅需100~200mg,粒度在0.1~0.25mm。DTA设备简单,用样量少,分析时间较短,但破坏样品,且干扰因素多,混合样品不能分离时会相互干扰。因此,必须与X射线分析、电子显微镜、化学分析等方法配合使用。

(2)热重分析(TG):是测定矿物在加热过程中质量的变化。热重曲线的形式取决于水在矿物中的存在形式和在晶体结构中的存在位置。TG仅限于鉴定和研究含水矿物,并可确定其含水量。TG以纯的矿物粉末为样品,样量一般需2~5g,且破坏样品。TG常与DTA配合使用。目前正向微量(10-5g)分析发展。

阅读全文

与超快铁性单晶的研究方法相关的资料

热点内容
人力分析有哪些方法 浏览:749
hb101活力素使用方法 浏览:645
水利基金计算方法 浏览:213
最简单的原点赞美方法 浏览:177
你有几种解决数学故事问题的方法 浏览:37
地砖可以用什么方法固定 浏览:696
葡萄虫最佳防治方法 浏览:138
方管简单的拼接方法 浏览:726
国足训练方法视频大全 浏览:295
华为手机快捷开关在哪里设置方法 浏览:56
低分化癌是怎么治疗方法 浏览:478
姬存希眼霜使用方法 浏览:318
铁锅的安装方法视频 浏览:928
蛋白铜的检测方法 浏览:531
猪瘟的微生物学诊断的方法和步骤 浏览:377
oppo手机充电头拆卸方法 浏览:626
skg4112美容仪使用方法 浏览:234
安全面部防护罩的安装方法 浏览:217
太阳一课运用哪些说明方法 浏览:260
弧扇淋浴房安装方法 浏览:677