❶ 如何在小学数学教学中有效开展概念教学
数学概念不仅是小学数学知识的基本要素,也是培养和发展学生数学能力的重要内容。对它的理解和掌握,关系到学生学习数学的兴趣,关系到学生计算能力和逻辑思维能力的培养,关系到学生解决实际问题的能力。由于小学生的年龄特点,直观形象思维制约了对数学中抽象概念的掌握,导致孩子们在学习和运用概念的过程中,经常出现这样或那样的错误。那么,怎样才能使数学概念教学更有效呢?
一、数学和生活实际联系,引入概念
数学知识来源于生活,又应用于生活。把点滴生活经验变成系统数学知识目的在于使其更好地运用到生活中去,除了在课堂上一些与生活相连的习题更好体会知识的还是生活本生。
例如,在教学《认识钟表》时,认识整时和大约几时这两个数学概念本身就比较抽象,你若直接告诉孩子看钟点的方法:分针对着12,时针对着几就是几时,1时=60分,1分=60秒,孩子未必真正理解,而且长期地这样教学学生就不会去思考,产生一种依赖的心理。因此我们在课起始时便以猜谜揭示课题,而后分认识钟面,认识整时和大约几时三步走。认识钟面环节让学生根据已有经验说说钟面的认识,为了让学生的介绍更为有针对性把提问变成“你知道钟面上有什么?”这样学生根据手中的闹钟很容易回答。在学生拨钟也让学生自由的拨出一些整时并说说在这一时刻在干什么,这样学生对各个时段的认识就能联系生活而不仅仅停留在1~12各个数上。在“两个8时”这一环节,让学生根据生活经验充分的讨论两个8时的存在和不同,再指导学生会照样子用一句话说一说,同时从数学角度提醒学生在平时说话时要注意用上“早晨、上午、下午、晚上” 等词语,这样说起来就更清楚明白。钟面、整时和大约几时三个环节层层递进,每一个环节与学生经验紧密联系。
低年级小学生,由于年龄、知识和生活的局限,理解一个概念主要是凭借事物的具体形象。因此,在低年级数学概念教学的过程中,要做到细心、耐心,尽量从学生日常生活中所熟悉的事物开始引入。这样,学生学起来就有兴趣,思考的积极性就会高。
二、迎合学生学习兴趣,引入概念
托尔斯泰说过:“成功的教育所需要的不是强制,而是激发学生的兴趣。”兴趣是成功的秘诀,是获取知识的开端,是求知欲的基础。学生对学习数学的兴趣,直接影响到课堂教学效率的高低。抽象的理论如果再加上干巴巴的讲解,必然不会引起学生的学习兴趣。
例如,在教学《认识角》时, 既要让学生感知直角、锐角、钝角等不同种类的角,又要注意变化角的大小和角的开口方向,这样才能获得对角的清晰认识。教师可以事先做好一个只露出三角形一个角的教具,让学生观察露出的一个角,判断整个三角形是什么三角形。当露出一个直角时,学生马上回答这是个直角三角形;当露出一个钝角时,学生马上回答这是个钝角三角形;当露出一个锐角时,学生就自然而然地回答这是个锐角三角形。这时教师拿出的却不是锐角三角形,这样,学生就有了悬念:为什么有一个直角的是直角三角形,有一个钝角的是钝角三角形?而一个角是锐角的三角形就不一定是锐角三角形了呢?这时学生强烈的求知欲已经成为一种求知的“自我需要”,学生的学习兴趣得到了激发,使兴趣成为学生学习的动力,为教学新概念创造良好的学习气氛,使学生在获得概念的整个过程中感到学习的快乐。
三、动手操作,引入概念
低段小学生他们爱摆弄东西,什么都想尝试。但若遇到困难而无法解决时,操作的积极性就会下降。所以利用学生这种心理适当安排动手尝试的学习内容可以激发起学生的学习兴趣,更好得形成概念。
例如,在教学《米和厘米》时,在认识了“厘米”以后我安排学生通过测量,看看你身体上哪个部位的长度最接近一厘米。学生的积极性很高,先是拿出尺子不停的比划,然后三五成群的议论开了,积极主动地去寻求答案。在交流想法时,小朋友不仅给出了我想要的答案,更让我收获了不少的惊喜。
学生在操作、实践中获得感性认识,经历“充分感知-丰富表象-领悟内涵”的过程,在头脑中切实、清楚地建立了1厘米的实际长度和空间观念,突出了本节课的教学重点。
四、巧用多媒体,引入概念
应用多媒体辅助教学,充分激活课堂教学中的各个要素,全方位地调动和发挥教师在课堂教学中的主导作用和学生学习的主体作用,建立合理的教与学的关系,
例如,在教学《认识分数》时,我设计了这样一个动画:周末,同学们去野餐,在优美的音乐的声中,一群活泼可爱的小朋友来到了郊外,贴近生活化的情境一下子就吸引了学生的注意力。跟着提出问题:“把8个苹果和4瓶果汁平均分给2人,每人分得多少”?学生回答后动画演示分得的结果,非常直观地显示出“平均分”,加强了学生对“平均分”这个概念的理解。接着提出:“把一个生日蛋糕平均分成2份,每人分得多少”?演示“一半”,提出“一半”用什么数来表示?自然地引出本节课要研究的认识分数。
我们在教学中,要结合概念的特点和学生的实际,灵活掌握使用,优化数学概念教学,提高概念教学的有效性,更好地进行概念教学。
❷ 数学概念教学方法具体是什么
数学概念是抽象化的空间形式和数量关系,是反映数学对象本质属性的思维形式。数学概念也是数学基础知识和基本技能的核心,它是理解、掌握其它数学知识的基础,对培养学生的逻辑思维和灵活运用知识实现迁移的能力有重要的作用,在数学课堂中如何有效地实施概念教学,直接影响教学效果的提高。现结合数学概念教学的实践,谈几点自己的认识与做法。
一、重视教学情境创设,实现概念引入的自然化
数学教材多是直接给定概念,教师应遵循高中数学新课标的要求,加强概念的引入,引导学生经历从具体实例抽象出数学概念的过程。合理设置情境,使学生积极参与教学,了解知识发生、发展的背景和过程,使学生感受到学习的乐趣,这样也能使学生加深对概念的记忆和理解。
1.以数学史话引入概念
教学中,适当引入与数学概念相关的故事,并巧妙处理,既可激发学习兴趣,又可达到教育之目的。如教曲线方程时讲讲笛卡尔和费马;学数列时讲数学家高斯故事;讲二项式定理时向学生介绍杨辉等。在故事引入的同时鼓励学生勇于探索,培养他们爱科学、学科学、用科学的科学精神。
2.以实际问题引入概念
数学概念来源于实践,又服务于实践。从实际问题出发引入概念,使得抽象的数学概念贴近生活,使学生易于接受,还可以让学生认识数学概念的实际意义,增强数学的应用意识。例如可从教室内墙面与地面相交,且二面角是直角的实际问题引入“两个平面互相垂直”的概念。
3.利用学生探究实现概念的自然引入
以概念为基础,以过程为导向,是概念教学的基本理念。让学生在学习中发现问题,并通过一定的方式解决问题,这是新课程理念的最好体现。在概念教学过程中,教师应在学生现有的知识背景、能力水平和心理特点的基础上,给学生提供适当的范例,引导学生对实例进行观察、比较,对概念进行假设、验证,从而获得正确的概念。如在“异面直线距离”的概念教学时,不妨先让学生回顾学过的有关距离的概念,如两点间的距离、点到直线的距离、两平行线间的距离,引导学生发现这些距离的共同特点是最短与垂直。然后启发学生思考在两条异面直线上是否也存在这样的两点,它们间的距离最短?如果存在,有什么特征?经过探索,得出如果这两点的连线段和两条异面直线都垂直,则其长是最短的,并通过实物模型演示确认这样的线段存在。在此基础上,自然地得到“异面直线距离”的概念。在引入过程中调动了学生积极性,培养了勇于发现,大胆探索的精神。
二、善于解剖概念,实现概念教学的深刻化
数学概念是为了解决数学问题,对概念理解不清,在解题时就会出现错误;对概念理解不透彻,常会遇到问题束手无策。要正确深刻地理解概念绝非易事,数学概念具有严密的科学性,因此概念教学应让学生准确把握概念的内涵和外延,教师要根据学生的知识结构和能力特点,从多方面着手,适当引导学生剖析概念,抓住概念的实质。在教学中可以从以下几个方面解剖概念:
1.强调概念中的关键词语
如对函数概念中的“任何”与“唯一”要重点强调。然后举例 ,前者可以称 是 的函数,后者不能称 是 的函数。因为对于任何一个 ,不是对应唯一 。这样通过正反实例,强调概念中的关键词语,更能加深概念的理解。
2.注重数学语言的翻译
数学语言有文字语言、符号语言、图形语言。符号语言有较强的概括性,更能反映概念的本质。如等差数列的概念可用符号“ ”( 为常数)概括。用定义证明一个数列是等差数列时,就是应用概念的符号语言。图形语言则能更形象地反映概念的内容。如讲“交集”概念时,用文氏图表示“A B”,可以很容易理解概念。
3.注重相似概念的对比分析
有比较才有鉴别。用对比方法找出容易混淆的概念的异同点,有助于学生区分概念,获取准确、明晰的认识。比如对分类计数原理与分步计数原理、排列与组合的概念,就可以通过概念对比,并结合实例的方式加深概念理解。
三、精心设计练习,实现概念教学的持续化
数学概念教学的主要目的是让学生在理解概念的基础上,运用知识解决数学问题,提高数学能力,全面提高学生素质。所以在练习设计上一定要精、针对性强,便于提高学生的能力。
1.加强应用概念中易错原因剖析
很多概念本身就是解题方法。如“反函数”概念,就已经体现了反函数求法:“反解 ”——“将 与 互换”——“标明反函数的定义域”(要通过原函数的值域来确定)。在反函数的求解中,学生常出现反函数定义域由反函数解析式本身确定而导致的错误。如果注意在解题中强化反函数概念以及它的由来,就可以避免这样的错误了。
2.加强概念的逆用、变用,从中获得解题方法
❸ 概念教学的方法
概念教学的基本方法:
一、注重概念的来源和形成
数学概念不是简单的由数字推导出的结论,其本质是人类对现实世界空间形式和数量关系的概括反映,是从现实生活中抽象出来的真理。概念的形成过程是通过对系列感性材料进行认识、分析、抽象和概括后得出的。认识任何事物都必须先弄清其来龙去脉,数学概念也同样如此,有了这一前提,既消除了学生对于数学概念抽象、死板的印象,又活跃了课堂氛围,调动了学生学习的积极性。在传统的数学概念教学中,一般采取“概念加例题”的方式,不利于学生对概念的理解。注重概念的来源和形成过程,能够从本质上完整地揭示概念的本质属性,使学生对理解概念具备思想基础,同时也能培养学生从具体到抽象的思维方法。
二、注重概念的变式练习
真正掌握概念必须学会各种变式练习,变式练习既是知识转化为技能的关键途径,也是巩固学习成果的重要方法。变式训练,就是在数学教学过程中对概念、性质、定理、公式,以及问题从不同角度、不同层次、不同情形、不同背景做出有效的变化,使其条件或形式发生变化,而本质特征不变。
三、注重结合生活实例
概念的形成依赖于感性认识,却以理性认识的抽象符号和语言表现出来。根据心理学研究,学生更容易接受具体的感性认识。比如,你描述了若干“圆”的特征,都不如直接拿一个实物来讲解一下容易理解。在数学教学过程中,各种形式的直观教学,是提供丰富、正确的感性认识的主要途径,所以在讲述新概念时,从引导学生观察和分析有关具体实物入手,更容易揭示概念的本质特征。
四、掌握概念是学好数学的基础,在教学中教师应注重引导学生形成良好的概念认知结构,培养学生从概念的联系中寻找解决问题的思路和方法的能力。本文介绍的数学概念教学的方法仅供参考,总的来讲,初中数学概念的教学没有固定的模式,只要我们根据学生的具体情况,从学生的心理出发,用各种生动活泼的教学方式调动起他们的学习积极性,让他们充分参与进来,全方位开发创新思维,就一定会收到事半功倍的成效。
初中数学概念教学的基本方法
2数学概念的主要特征
1)数学概念的组成 数学概念通常由概念的名称、定义、例子、属性和符号组成。如等边三角形这个概念,概念的名称是“等边三角形”(符号是“等边△”),数学概念具有抽象与具体的双重性。 数学概念代表的是一类对象而不是个别事物,它在一定范围内具有普遍意义。如“等边三角形”这个概念代表的是各种颜色、大小抽象的等边三角形,而任何具体颜色、大小的等边三角形都只是它的正面例子。数学概念是数学命题、数学推理的基础成分,就整个一个数学系统而言,概念是个实实在在的东西,这是数学概念具体性的一面。
2)数学概念的概括性强,如“等边三角形”就是对千千万万个具体的等边三角形的高度概括的认识。
3)数学概念的名称往往用特定的数学符号表示,如“等腰△”、“y=sinx”这些符号表示,使数学概念具有形式和简明的特点。
4)数学概念具有系统性。每一数学分支的概念由原名出发,经过不断抽象定义,逐步形成一个严密的概念系统。就某一具体知识而言,相关的概念也组成一个系统。例如,与三角形这一知识相关的概念,边、角、高、中线………组成一个关于三角形概念的系统。
3数学概念教学方法
一、注重利用生活实例引入概念
概念属于理性认识,它的形成依赖于感性认识,学生的心理特点是容易理解和接受具体的感性认识。教学过程中,各种形式的直观教学是提供丰富、正确的感性认识的主要途径。所以在讲述新概念时,从引导学生观察和分析有关具体实物人手,比较容易揭示概念的本质和特征。
二、注重剖析,揭示概念的本质
数学概念是数学思维的基础,要使学生对数学概念有透彻清晰的理解,教师首先要深入剖析概念的实质,帮助学生弄清一个概念的内涵与外延。也就是从质和量两个方面来明确概念所反映的对象。
三、注重概念的形成过程
许多数学概念都是从现实生活中抽象出来的。讲清它们的来源,既会让学生感到不抽象,而且有利于形成生动活泼的学习氛围。一般说来,概念的形成过程包括:引入概念的必要性,对一些感性材料的认识、分析、抽象和概括,注重概念形成过程,符合学生的认识规律。在教学过程中,如果忽视概念的形成过程,把形成概念的生动过程变为简单的“条文加例题”,就不利于学生对概念的理解。因此,注重概念的形成过程,可以完整地、本质地、内在地揭示概念的本质属性,使学生对理解概念具备思想基础,同时也能培养学生从具体到抽象的思维方法。
四、注重通过比较巩固对概念的理解
巩固是概念教学的重要环节。心理学原理认为:概念一旦获得,如不及时巩固,就会被遗忘。巩固概念,首先应在初步形成概念后,引导学生正确复述。这里绝不是简单地要求学生死记硬背,而是让学生在复述过程中把握概念的重点、要点、本质特征,同时,应注重应用概念的变式练习。恰当运用变式,能使思维不受消极定势的束缚,实现思维方向的灵活转换,使思维呈发散状态。
4数学概念有效方式
一、重视学生原有认知结构,拓展联想空间
新概念学习的前提是学生具有良好的认知结构和丰厚的知识积累,必须唤起学生原有认知结构中的有关知识和生活经验。有些教师认为学生已具备了相关知识的储备,没有必要进行复习,结果出现学生对新概念茫然混沌、理解碎裂的状况。在案例教学中,三角函数也是反映两个变量之间的关系,为突出函数的本质,我在教学中引导学生复习已学过的函数,再顺势揭题。
三、经历数学概念思维过程,体验成长快乐 。数学概念的教学就应该成为思维的体操,积极展示思维的发生、发展,从具体到抽象,让概念在条理中、在生动活泼的思维历练中自然生成。课例中,通过问题的设计和不断的探究,让学生体会到在直角三角形中:锐角固定,则这个角的对边与邻边的比值固定。自然得出:锐角变化,则这个角的对边与邻边的比值随之变化。正切概念来之自然、呼之欲出。
二、再现数学概念现实背景,激发学习兴趣
数学来源于生活,服务于生活。庞加莱曾讲过这样一个故事:教室里,先生对学生说“圆周是一定点到同一平面上等距离点的轨迹”,可学生听后面面相觑,谁也不明白圆周是什么,于是先生拿起粉笔在黑板上画了一个圆圈,学生们立即欢呼起来“啊,圆周就是圆圈啊,明白了”,这一故事告诉我们进行概念教学时,教师应从实际出发,创设情境,提出问题,让学生在满腹狐疑中觉得有必要学习这个概念。
四、理解数学概念内涵外延,构建问题模式 。多角度、多变式、循序渐进的安排概念问题的训练是概念固化的关键,这个环节的成功与否直接影响学生的解题能力的提高。案例中,既回归生活(坡面),又对概念的内涵和外延进行了例题设计,强化了对正切概念的本质认识,为下课时正弦、余弦概念的学习打好了基础。
❹ 数学概念教学的方法与策略
要正确处理好传授数学基础知识,有关数学概念、公式、定理与发展学生逻辑思维的关系;处理好培养运算能力、空间想象能力与发展学生逻辑思维的关系。努力做到在传授知识的基础上发展智能,在发展智能的指导下传授知识,使学生在掌握知识上达到高质量,在智能发展上达到高水平。
❺ 如何做好数学概念教学
概念是客观事物本质属性在人们头脑中的反映。数学概念是反映现实世界的空间形式和数量关系的本质属性的思维形式。在中学数学教学中,正确理解数学概念是掌握数学知识的前提,是学好定理、公式、法则和数学思想的基础,搞清概念是提高解题能力的关键。只有对概念理解得深透,才能在解题中做出正确的判断。初中数学教学内容里有大量的数学概念,它既是数学教学的重要环节,又是数学学习的核心。因此,作为教师在教学中必须加强数学概念的教学。
一、做好概念的引入
1.从实际引入。概念属于理性认识,它的形成依赖于感性认识,学生的心理特点则是容易理解和接受具体的感性认识,所以在讲述新概念时,从引导学生观察和分析有关具体实物入手,比较容易揭示概念的本质和特征。例如,讲“数轴”的概念时,教师可模仿秤杆上用点表示物体的重量。秤杆具有三个要素:①度量的起点;②度量的单位;③明确的增减方向。这样以实物启发人们用直线上的点表示数,从而引出了数轴的概念,让学生从先对概念的现实原型有所感受,再将抽象的特征浓缩成数学概念。教学过程中,各种形式的直观教学是提供丰富、正确的感性认识的主要途径。
2.从旧概念的基础上引入。在教学新概念前,如果能对学生认知结构中原有的适当概念作一些类比引入新概念,则有利于促进新概念的形成。例如:在教学一元二次方程时,可先复习一元一次方程,因为一元一次方程是基础,一元二次方程是延伸,复习一元一次方程是合乎知识逻辑的,二者的差异仅在于未知数的最高次数不同,因此很容易建立一元二次方程的概念。
二、抓住概念的本质
1.揭示含义,突出关键词。数学概念严谨、准确、简练。教师的语言对于学生感知教材、形成概念具有重要的意义,因此要特别注意用词的严格性和准确性。教师要用生动、形象的语言讲清概念中关键的字、词、句的意义,这是指导学生掌握概念并认识概念的前提。
例如:“含有相同的字母,并且相同字母的指数也相同的项叫做同类项。”这个概念中,可抓住“相同”这一关键字作分析:出现了几次相同?相同的是什么?又如“最简二次根式”的概念中,要抓住满足的两个条件这些关键字眼。
期刊文章分类查询,尽在期刊图书馆
只有学生真正理解了概念,那么在解决问题的时候,才能得心应手,不会出现错误。
2.弄清概念的内涵和外延。数学概念的内涵反映了数学对象的本质属性,外延是数学概念所有对象的总和,对概念的深化必须从概念的内涵和外延上作深入的分析。剖析概念的内涵就是抓住概念的本质特征。例如教学正方形的概念时,已学过平行四边形、矩形、菱形的概念,教学时可通过对正方形与矩形、菱形的概念作比较分析,发现正方形概念的内涵中包括矩形和菱形概念的内涵,从而在外延关系上得出正方形是特殊的矩形和菱形,而它们又都是特殊的平行四边形。从对正方形概念的教学,转向对平行四边形、矩形、菱形和正方形之间的区别及其联系的分析,进而把平行四边形的知识系统化了。教学中注意引导学生从概念的内涵和外延上加以区别,找出它们的异同点,不仅有利于学生掌握数学概念,也有助于培养学生思维的广阔性,提高学生的辩证思维能力。
3.剖析变化,深化概念。数学概念都是从正面阐述,一些学生只从表面文字上理解,碰到具体的数学问题却难以做出正确的判断。所以在学生正面认识概念的基础上,可通过反例或变式从反面剖析数学概念,凸显隐蔽的本质要素,加深对概念理解的全面性。有些学生对概念的全面理解不可能一蹴而就,而是要经历“实践——认识——再实践——再认识”的过程,通过对后续知识的学习回过头来再对概念进行加深理解,遵循“循环反复,螺旋上升”的学习原则。
三、注重概念的运用,升华概念
例如,对一次函数概念的掌握,可通过下列练习:
①如果y=(m+3)x-5是关于x的一次函数,则m=()。
②如果y=(m+3)x-5是关于x的一次函数,则m=()。
③如果y=(m+3)x+4x-5是关于x的一次函数,则m=()。
学习数学概念的目的,就是用于实践,因此要让学生通过实际操作去掌握概念、升华概念。概念的获得是由个别到一般,概念的应用则是从一般到个别。学生掌握概念不是静止的,而是主动在头脑中进行积极思维的过程,它不仅能使已有知识再一次形象化、具体化,而且能使学生对概念的理解更全面、更深刻。
四、利用先进教学手段,使抽象概念具体化
有些数学概念对学生来说抽象难懂,是教学中的难点。而利用多媒体计算机的优势,使教学的表现形式更加形象生动,既有利于提高学生学习的积极性,又充分揭示了数学概念的形成与发展。例如学习两圆的位置关系时,通过多媒体的演示,让学生对抽象的概念有了更直观的体验与认识。
数学概念教学对整个数学教学起着至关重要的作用,学生透彻牢固地掌握概念是提高教学质量的关键。在平时的概念教学中应尝试运用不同的教学方法,揭示概念的形成与发展,做好概念的巩固和应用,完善学生的认知结构,发展学生的思维能力,使不同的人在数学上得到不同的发展。