Ⅰ 基于遥感影像土地利用分类方法研究
土地利用分类是区分土地利用空间地域组成单元的过程。由于地块所处的自然地理位置不同,受自然条件和社会经济条件的影响,导致土地用途、利用方式、经营特点等各方面的差异。为实现土地资源科学化管理,从土地利用现状出发,根据土地利用的地域分异规律、土地用途、土地利用方式等,将一个国家和地区的土地利用情况,按照一定的层次等级体系划分为若干不同的土地利用类别。
6.1.1 国内外土地利用分类方法历史沿革
国外土地分类至今约有半个多世纪的历史,到 20 世纪 60 年代和 70 年代就出现了各种土地分类系统。国外土地分类多数以土地利用现状作为分类的依据,具体到各国又有差异。如,美国主要以土地功能作为分类的主要依据;英国和德国以土地覆盖(是否开发用于建设用地)作为分类依据;俄罗斯、乌克兰和日本以土地用途作为分类的主要依据;印度则以土地覆盖情况(自然属性)作为划分地类的依据。
国内的土地分类研究起步相对较晚,主要是在改革开放以后。国内土地分类依据与国外基本相同,也是以土地利用现状作为分类依据,如土地利用现状调查(简称土地详查)采用以土地用途、经营特点、利用方式和覆盖特征为分类依据,城镇地籍调查采用以土地用途为分类依据等。
为了满足土地用途管理的需要,国土资源部先后制定了《土地利用现状分类及含义》(1984),《城镇土地分类及含义》(1989),城乡统一的《全国土地分类》(2001)。《全国土地分类》包括《全国土地分类》(试行)和《全国土地分类》(过渡期间适用),第二次土地调查国家发布了《土地利用现状分类》(2007)国家标准等,为全国土地分类提供了标准和依据。
6.1.2 基于遥感影像土地利用分类原则
面向国土资源行业遥感数据的规模化、高效率应用,达到快速规模化获取土地利用信息,实现高精度、高效获取土地利用变化信息,迅速建立满足国家和省级土地资源业务管理需要的国家级、省级土地利用现势信息源需求,在研究分析前期实行的土地利用分类方法的基础上,提出了基于遥感影像的土地利用分类,在项目区予以应用并得到预期良好效果。
基于遥感影像的土地利用分类,是依据遥感影像的色彩、纹理等影像光谱特征、分布特征和地物光谱的可分性,结合土地的自然属性、覆盖特征以及土地用途等因素,从满足基于遥感影像快速获取土地利用信息的需要进行分类。
分类原则:
(1)具有可操作性。要求土地利用分类体系要简便易用、层次分明,要具有适宜遥感影像特点,通过遥感影像所反映色彩、纹理等影像光谱特征以及分布特征,在遥感影像上能够明显区分不同地类类型,适用于人机交互并基本满足计算机自动分类提取土地利用信息。
(2)具有统一性。要与国家土地利用分类体系框架保持一致。
(3)具有兼容性。既能向上归并到国家土地分类标准体系中的某一类型,还可根据管理和应用需要进行续分 , 可实现不同分类标准之间的相同地类进行地类代码转换,与以往的以及现在适用的土地分类进行有效衔接。
(4)具有通用性。即具有时间和空间上的通用性,不同的作业者用不同季节的影像应该能达到精度范围内的同样效果。
为了科学合理利用和管理土地资源,采用遥感影像数据获取土地利用信息,快速掌握土地利用变化情况,根据我省土地利用管理业务实际需要,建立更适合土地利用精确调查和我省遥感监测业务调整与扩展的基于遥感信息土地利用分类标准具有重要的现实意义。
6.1.3 严格管理土地需要快速、规模化获取土地利用变化信息
近年来,随着社会经济的发展,遥感技术也随之得到了快速发展,遥感技术在土地资源的管理中得到了广泛应用。但随着人、地矛盾的日益加大,如何科学、合理地利用土地资源,如何监督新增建设用地及其占用耕地情况和土地规划、土地利用计划执行情况,及时发现和查处土地违法、违规行为,检查土地严格管理和土地调控措施的落实与效果,利用遥感技术快速规模化获取土地利用变化情况成为当今土地资源管理的有效手段。
在土地资源管理中,近几年国家和省不断加大土地执法监察力度,每年都要对耕地和新增建设用地变化情况进行遥感动态监测,利用前、后时相遥感影像(DOM)进行比对,或利用已有土地利用数据库与后时相遥感影像进行比对,发现和提取土地利用变化信息,通过外业核查、后处理和数据汇总,快速获取和宏观分析土地利用、变化的总体情况,及时发现和查处土地违法、违规行为,为土地执法监察提供了有力的技术依据。
6.1.4 原有土地利用分类不适宜快速提取土地利用信息
1984~2007 年间,我国普遍采用的是《土地利用现状分类及含义》(1984)标准、《全国土地分类》(试行)标准和《全国土地分类》(过渡期间适用)标准,采用以上分类标准对于快速提取土地利用分类信息和动态遥感监测存在一些问题和缺陷。
首先,分类过细。《土地利用现状分类及含义》(1984)分为 8 个一级地类,46 个二级地类,河南省根据地方实际在全国土地分类基础上又续分了 12 个三级地类;《全国土地分类》(试行)分为 3 个一级地类,15 个二级地类,71 个三级地类;《全国土地分类》(过渡期间适用)分为 3 个一级地类,10 个二级地类、52 个三级地类。以上分类标准都具有类别繁多、过于细化的特点,无法满足国家和省快速提取和掌握土地利用变化信息的需求。
其次,部分地类在遥感影像上无法区分,如:耕地中水浇地与旱地,园地与林地,独立工矿与特殊用地等,影像纹理、色彩特征极为相近,难以区分。
再次,部分地类与遥感影像无法衔接,如商服用地、工矿仓储用地、公共建筑用地等信息,从遥感影像上无法直接获取。
6.1.5 区域土地利用类型的特殊性
黄河滩地,是指在黄河大堤之间河床滚动所淤积而成的滩地。横穿河南省中北部的黄河属河南省的特有特征,即地上悬河、河床宽度大、非洪水期过水面积小、大堤内近 90% 的滩涂分别由黄河两岸农民在耕作。但是由于黄河河床经常变动等原因,黄河滩地的面积和方位不断发生变化,可种植面积也不稳定。许多滩地至今仍权属不明,经常引发滩地耕种纠纷。另外在黄河滩地种植农作物具有一定的风险性,种植的作物一旦遇到河水上涨被水淹没会造成收成大减甚至颗粒无收。
公路林带,在河南省辖区内,高速公路、国道、省道、干线铁路等主要交通用地两侧均栽种了宽度 30~50 m 不等的速生树种,在地类统计时,国土资源管理部门是按耕地计算,而林业部门则按照林地计算,为准确获取林带数据有必要单独统计,以解决在统计上口径不一、数出多门的问题。
6.1.6 遥感影像上光谱信息,纹理、色彩等特征相近的土地类型
高分辨率卫星遥感影像光谱信息丰富、色彩鲜艳,接近于自然地物的真实色彩。通过遥感影像所反映的纹理、颜色等影像特征和分布特征,大部分土地利用类型在影像上能够明显区分。但是按照全国土地分类,有些地类在影像上呈现相近或相同特征,对于室内判读难以分辨。
(1)水浇地与旱地(图 6-1、图 6-2)。
图 6-1 水浇地(113)
图 6-2 旱地(114)
(2)园地与林地(图 6-3、图 6-4)。
图 6-3 果园(121)
图 6-4 有林地(131)
(3)独立工矿与特殊用地(图 6-5、图 6-6)。
图 6-5 独立工矿(204)
图 6-6 特殊用地(206)
土地利用分类体系还要充分考虑未来遥感技术发展,适用于遥感自动化提取信息的需要,影像特征相近的土地利用类型无法利用自动分类技术进行区分。
Ⅱ 现状研究可以用什么方法
选择合适的调研方法直接关系到调研工作开展。笔者结合调研工作实际,将常用的九大调研方法进行介绍分析,供大家调研时参考。
1.实地观察法。调查者在实地通过观察获得直接的、生动的感性认识和真实可靠的第一手资料。但因该法所观察到的往往是事物的表面现象或外部联系,带有一定的偶然性,且受调查者主观因素影响较大,因此,不能进行大样本观察,需结合其他调查方法共同使用。通常适用于对那些不能够、不需要或不愿意进行语言交流的情况进行调查。
2.访谈调查法。该法是比实地观察法更深一层次的调查方法,它能获得更多、更有价值的信息,适用于调查的问题比较深入,调查的对象差别较大,调查的样本较小,或者调查的场所不易接近等情况。包括个别访谈法、集体访谈法、电话访谈法等。但由于访谈标准不一,其结果难以进行定量研究,且访谈过程耗时长、成本较高、隐秘性差、受周围环境影响大,故难以大规模进行。
3.会议调查法。这种方法是访谈调查法的扩展和延伸,因其简便易行故在调查研究工作中比较常用。通过邀请若干调查对象以座谈会形式来搜集资料、分析和研究社会问题。最突出的优点是工作效率高,可以较快地了解到比较详细、可靠的社会信息,节省人力和时间。但由于这种做法不能完全排除被调查者之间的社会心理因素影响,调查结论往往难以全面反映真实的客观情况。且受时间条件的限制,很难做深入细致地交谈,调查的结论和质量在很大程度上受调查者自身因素影响等。
8.统计调查法。通过分析固定统计报表的形式,把下边的情况反映上来的一种调查方法。由于统计报表的内容是比较固定的,因此适用于分析某项事物的发展轨迹和未来走势。如通过党员统计年报表,可以分析出某地全年党员的发展、转接、流动等情况,并能分析出比上年同期增减情况,还可对下一步趋势作出预测。运用统计调查法,特别应注意统计口径要统一,以统计部门的数字为准,报表分析和实际调查相结合,不能就报表进行单纯分析。如对某一个数据大幅度上升或下降的原因,报表中难以反映出来,只有通过实际调查才能形成完整概念。
9.文献调查法。通过对文献的搜集和摘取,以获得关于调查对象信息的方法。适用于研究调查对象在一段时期内的发展变化,研究角度往往是探寻一种趋势,或弄清一个演变过程。这种方法能突破时空的限制,进行大范围地调查,调查资料便于汇总整理和分析。同时,还具有资料可靠、用较小的人力物力收到较大效果等优点。但它往往是一种先行的调查方法,一般只能作为调查的先导,而不能作为调查结论的现实依据。
Ⅲ 高光谱影像分类技术研究现状
遥感影像分类是对影像中包含的多个目标地物进行区分,并给出单个像元的对应特征类别。按照是否需要先验样本,分为监督分类和非监督分类。
1.2.1.1 高光谱影像监督分类方法
针对高光谱影像监督分类,可以把现有的分类算法分为光谱特征匹配分类、统计模型分类、同质地物提取分类、纹理信息辅助分类、面向对象分类、决策树分类、模糊聚类方法、专家系统分类、神经网络分类、支持向量机分类、流行学习分类、集成学习分类、基于云模型分类等方法。
(1)光谱特征匹配分类方法
根据已知光谱数据,采用匹配分析算法区分待测光谱的类别,从而实现影像分类。它可以是整波段光谱匹配,也可以是部分感兴趣波段光谱匹配。如Geotz(1990)提出了二值编码匹配算法,通过设定阈值,将像元光谱转换为编码序列,在一定程度上压缩了原始光谱,但也降低了光谱区分度。常见的二值编码算法有分段编码、多门限编码和特征波段编码等。Clark et al.(1998)提出了一种拟合算法,通过计算像元光谱与样本光谱的拟合度来确定像元隶属于样本的概率。Kruse et al.(1993a)通过计算待测光谱和参考光谱的矢量夹角来比较其相似程度,并认为两条光谱的角度越小,表明相近程度越大。另外包络线去除法影像分类也是一种光谱匹配方法,它是通过对单个像元光谱进行包络线生成,并通过包络线比值法、光谱微分技术和曲线拟合技术,突出光谱曲线的峰谷特性,进而提取出反映某个问题的敏感波段,之后利用敏感波段进行分类研究。白继伟等(2003)认为,包络线去除法分类技术可以很好地抑制噪声,提高分类准确率,特别适用于植被识别。Meeret al.(1997)设计了交叉相关光谱匹配技术(Cross Correlogram Spectral Mapping,CCSM),该算法通过计算测试光谱和参考光谱的相关系数、偏度系数和相关显着性标准来综合评价光谱的匹配程度。Kruse et al.(1990)利用半波长宽度、波长位置和吸收深度等特征参数进行光谱匹配。
(2)统计模型分类方法
McIver et al.(2002)认为最大似然分类是最常用的基于统计模型的分类方法,该方法假设各地物在影像上出现的概率服从多维正态分布(Swain et al.,1978)。杨国鹏等(2008)构建了核Fisher判别分析方法,通过分类实验,认为该方法优于SVM分类方法。
(3)基于同质地物提取的分类方法
一般的分类方法往往没有考虑待测像元与其周围相邻像元的关系,因为受影像空间分辨率的限制,单像元光谱所代表的地面信息一小部分来自于本地物像元,其他很大一部分来自于其周围相邻像元。Kettig et al.(1976)设计了基于同质地物提取与分类方法(Ex-traction and Classification of Homogeneous Objects,ECHO),该方法充分考虑了待测像元和临近像元的关系。
(4)纹理信息辅助下的分类方法
纹理信息是地物特性的有效表达,基于纹理信息可识别不同地物。Haralick et al.(1973)提出的灰度共生矩阵(Gray Level Co-occurrence Matrix,GLCM)是一种应用广泛的纹理分析技术,通过计算影像统计特性,来表达其灰度密度分布规律。基于变换的傅立叶分析将影像空间域信号变换到频率域(Augusteijn et al.,1995),利用能量谱、振幅谱和相位谱对影像进行纹理特性描述,用以分类。舒宁(2004)利用主成分变换,提取影像纹理特征,进行分类,他们认为PCA可以提高分类精度。
(5)面向对象的分类方法
区别于传统的基于像元的分类方法,面向对象分类方法的处理单元为图像对象,也称图斑对象。Benz et al.(2004)将图斑对象定义为空间形态和光谱特征相似的独立区域。影像分割技术是面向对象分类的实质,影像分割技术的发展在一定程度上决定了面向对象分类技术的发展。Kwon et al.(2007)设计了完全四叉树(Quad-tree Decomposition,QTD)高光谱影像分割方法。Shah et al.(2002)提出了改进的独立成分分析高光谱影像分割方法。Acito et al.(2003)提出了基于高斯混合模型(Gaussian Mixture Model,GMM)的统计分割方法。
(6)决策树分类方法
决策树分类法通过制定每一层树节点的判别规则,逐层进行比较分类。Hansen et al.(1996)认为决策树分类对分布特性不规则、不可参数化的训练数据有较好的分类效果。王圆圆等(2007)利用决策树对高光谱数据进行分类研究,认为经特征选择后,可使其分类精度提高。
(7)模糊聚类方法
模糊分类基于事物表现的不确定性,通过分析这种模糊性,概括和发现规律从而实现分类。遥感影像像元也存在某种模糊性,针对遥感影像的模糊分类最初由Wang(1990)和Carpenteret al.(1992)人提出。闫永忠等(2005)结合绝对指数,利用模糊聚类法对高光谱影像分类,分类精度较高。
(8)专家系统分类方法
专家系统是利用多种经验知识和判别规则,借助于计算机分析对比待测知识和专家知识的匹配程度来进行分类。国外,很多学者开发了高光谱影像专家分类系统,如Lyon etal.(1990)研制了Stanexpert专家系统,对矿物进行自动识别。利用分类规则,Kruse etal.(1993b)开发了功能强大的光谱识别系统。Kimes则开发了VEG系统用于植被光谱识别。
(9)神经网络分类方法
人工神经网络(Artificial Neural Network,ANN)利用数学和物理方法,从信息处理的角度,对人脑的思维过程进行模拟,并建立某种简化模型(韩力群,2006)。在高光谱遥感领域,ANN多用于物质生化组分的定量分析。Toivanen et al.(2003)利用SOFM神经网络从多光谱影像中提取边缘,并指出该方法可应用于大数据量影像边缘的提取;Moshou et al.(2006)根据5137个叶片的光谱数据,利用SOFM神经网络识别小麦早期黄锈病,准确率高达99%。谭琨等(2008)通过提取OMIS II高光谱影像数据的特征成分,组成60维分量数据,分类精度达到69.27%。宋江红等(2006)提出了基于独立成分分析和神经网络结合的高光谱数据分类。周前祥等(2005)等设计了一种非线性网络,根据高光谱数据的纹理和光谱特征进行分类。
(10)支持向量机分类方法
支持向量机由Vapnik(1995)提出,SVM应用在高光谱影像分类方面,国内学者做了很多研究,如,马毅等(2006)基于航空高光谱数据,提出了基于SVM的赤潮生物优势物种识别模型,认为该方法不受数据的高维限制。李祖传等(2011)提出了一种改进的随机场模型SVM-CRF,并对AVIRIS高光谱数据进行了分类实验,精度较高。李海涛等(2007)提出了基于最小噪声分离变换和SVM的高光谱影像分类方法,并采用OMIS1数据进行实验研究,总体分类精度高达94.85%。沈照庆等(2009)利用最近点算法(NPA),提出了无惩罚参数的SVM算法,通过对AVIRIS数据的分类实验,认为该方法提高了分类精度和速度。
(11)流行学习分类方法
流行学习(Manifold Learning,ML)是从高维采样数据中恢复低维流行结构,并求出相应的嵌入映射,实现数据维数约简。流行学习是模式识别的基本方法,有线性流行学习和非线性流行学习。其算法有等距映射、拉普拉斯映射、局部线性嵌入、局部切空间排列算法等。目前,国内很少有人研究其在高光谱影像分类方面的应用。Ma L et al.(2010a~c)认为流行学习比较适用于二分类问题,可以区分复杂地物,他们研究了基于k临近算法的流行学习方法、局部切空间排列的流行学习方法及广义监督分类的流行学习方法在高光谱影像异常检测和分类中的应用。杜培军等(2011)利用全局化等距映射(Iso-map)算法进行高光谱数据降维,效果良好。
(12)集成学习分类方法
集成学习在学习时采用多个学习器,并将输出结果按照自定义的规则进行综合,进而获得优于单个学习器的效果。集成学习方法可分为异态集成(如,叠加法和元学习法)和同态集成(朴素贝叶斯集成、决策树集成、人工神经网络集成、K-近邻集成等)。集成学习作为机器学习的前沿,目前,应用在遥感图像处理方面的研究甚少,而在高光谱影像分类方面更是凤毛麟角,但是该技术在本领域的研究前景非常广阔。
(13)基于云模型的分类方法
李万臣等(2011)提出了一种基于云模型的高光谱影像分类技术,通过生成地物样本的多维云模型,结合极大判别法则进行样本分类,分类精度较高。
1.2.1.2 高光谱影像非监督分类方法
针对高光谱影像非监督分类,现有的算法主要为K均值算法、ISODATA算法。
(1)K均值法
Tou和Gonzalez(1974)认为K均值算法是在待分类问题的类别数已知的情况下,从样本中确定聚类核心,样本其他元素按某种方式预先分到不同的类别中,然后进行聚类中心的调整,当中心稳定后结束聚类。
(2)ISODATA法
Ball和Hall(1965)提出了一种迭代自组织聚类方法(Iterative Self-organizing Data Analysis Techniques Algorithm,ISODATA)。该方法自主对地物类别进行“合并” 与“分裂”,从而得到较好的分类结果。
Ⅳ 教育研究方法的分类有哪几种方法
调查法
调查法是科学研究中最常用的方法之一。它是有目的、有计划、有系统地搜集有关研究对象现实状况或历史状况的材料的方法。调查方法是科学研究中常用的基本研究方法,它综合运用历史法、观察法等方法以及谈话、问卷、个案研究、测验等科学方式,对教育现象进行有计划的、周密的和系统的了解,并对调查搜集到的大量资料进行分析、综合、比较、归纳,从而为人们提供规律性的知识。
调查法中最常用的是问卷调查法,它是以书面提出问题的方式搜集资料的一种研究方法,即调查者就调查项目编制成表式,分发或邮寄给有关人员,请示填写答案,然后回收整理、统计和研究。
观察法
观察法是指研究者根据一定的研究目的、研究提纲或观察表,用自己的感官和辅助工具去直接观察被研究对象,从而获得资料的一种方法。科学的观察具有目的性和计划性、系统性和可重复性。在科学实验和调查研究中,观察法具有如下几个方面的作用:①扩大人们的感性认识。②启发人们的思维。③导致新的发现。
实验法
实验法是通过主支变革、控制研究对象来发现与确认事物间的因果联系的一种科研方法。其主要特点是:第一、主动变革性。观察与调查都是在不干预研究对象的前提下去认识研究对象,发现其中的问题。而实验却要求主动操纵实验条件,人为地改变对象的存在方式、变化过程,使它服从于科学认识的需要。第二、控制性。科学实验要求根据研究的需要,借助各种方法技术,减少或消除各种可能影响科学的无关因素的干扰,在简化、纯化的状态下认识研究对象。第三,因果性。实验以发现、确携歼认事物之间的因果联系的有效工具和必要途径。
文献研究法
文献研究法是根据一定的研究目的或课题,通过调查文献来获得资料,从而全面地、正确地了解掌握所要研究问题的一种方法。文献研究法被子广泛用于各种学科研究中。其作用有:①能了解有关问题的历史和现状,帮助确定研究课题。②能形成关于研究对象的一般印象,有助于观察和访问。③能得到现实资料的比较资料。④有助于了解事物的全貌。
实证研究法
实证研究法是科学实践研究的一种特殊形式。其依据现有的科学理论和实践的需要,提出设计,利用科学仪器和设备,在自然条件下,通过有目的有步骤地操纵,根据观察、记录、测定与此相伴随的现象的变化来确定条件与现象之间的因果关系的活动。主要目的在于说明各种自变量与某一个因变量的关系。
定量分析法
在科学研究中,通过定量分析法可以使人们对研究对象的认识进一步精确化,以便更加科学地揭示规律,把握本质,理清关系,预测事物的发展趋势。
定性分析法
定性分析法就是对研究对象进行“质”的方面的分析。具体地说是运用归纳和演绎、分析与综合以及抽象与概括等方法,对获得的各种材料进行思维加工,从而能去粗取精、去伪存真、由此及彼、由表及里,达到认识事物本质、揭示内在规律。
跨学科研究法
运用多学科的理论、方法和成果从整体上对某一课题进行综合研究的方法,也称“交叉研究法”。科学发展运动的规律表明,科学在高度分化中又高度综合,形成一个统一的整体。据有关专家统计,现在世界上有2000多种学科,而学科分化的趋势还在加剧,但同时各学科间的联系愈来愈紧密,在语言、方法和某些概念方面,有日益统一化的趋势。
个案研究法
个案研究法是认定研究对象中的某一特定对象,加以调查分析,弄清其特点及其形成过程的一种研究方法。个案研究有三种基本类型:(1)个人调查,即对组织中的某一个人进行调查研究;(2)团体调查,即对某个组织或团体进行调查研究;(3)问题调查,即对某个现象或问题进行调查研究。
功能分析法
功能分析法是社会科学用来分析社会现象的一种方法,是社会调查常用的分析方法之一。它通过说明社会现象怎样满足一个社会系统的需要(即具有怎样的功能)来解释社会现象。
数量研究法
数量研究法也称“统计分析法”和“定量分析法”,指通过对研究对象的规模、速度、范围、程度等数量关系的分析研究,认识和揭示事物间的相互关系、变化规律和发展趋势,借以达到对事物的正确解释枯隐猜和预测的一种研究方法。
模拟法(模型方法)
模拟法是先依照原型的主要特征,创设一个相似的模型,然后通过模型来间接研究原型的一种形容方法。根据模型和原型之间的相似关系,模拟法可分为物理模拟和数学模拟没型两种。
探索性研究法
探索性研究法是高层次的科学研究活动。它是用已知的信息,探索、创造新知识,产生出新颖而独特的成果或产品。
信息研究方法
信息研究方法是利用信息来研究系统功能的一种科学研究方法。美国数学、通讯工程师、生理学家维纳认为,客观世界有一种普遍的联系,即信息联系。当前,正处在“信息革命”的新时代,有大量的信息资源,可以开发利用。信息方法就是根据信息论、系统论、控制论的原理,通过对信息的收集、传递、加工和整理获得知识,并应用于实践,以实现新的目标。信息方法是一种新的科研方法,它以信息来研究系统功能,揭示事物的更深一层次的规律,帮助人们提高和掌握运用规律的能力。
经验总结法
经验总结法是通过对实践活动中的具体情况,进行归纳与分析,使之系统化、理论化,上升为经验的一种方法。总结推广先进经验是人类历史上长期运用的较为行之有效的领导方法之一。
描述性研究法
描述性研究法是一种简单的研究方法,它将已有的现象、规律和理论通过自己的理解和验证,给予叙述并解释出来。它是对各种理论的一般叙述,更多的是解释别人的论证,但在科学研究中是必不可少的。它能定向地提出问题,揭示弊端,描述现象,介绍经验,它有利于普及工作,它的实例很多,有带揭示性的多种情况的调查;有对实际问题的说明;也有对某些现状的看法等。
数学方法
数学方法就是在撇开研究对象的其他一切特性的情况下,用数学工具对研究对象进行一系列量的处理,从而作出正确的说明和判断,得到以数字形式表述的成果。科学研究的对象是质和量的统一体,它们的质和量是紧密联系,质变和量变是互相制约的。要达到真正的科学认识,不仅要研究质的规定性,还必须重视对它们的量进行考察和分析,以便更准确地认识研究对象的本质特性。数学方法主要有统计处理和模糊数学分析方法。
思维方法
思维方法是人们正确进行思维和准确表达思想的重要工具,在科学研究中最常用的科学思维方法包括归纳演绎、类比推理、抽象概括、思辩想象、分析综合等,它对于一切科学研究都具有普遍的指导意义。
系统科学方法
20世纪,系统论、控制论、信息论等横向科学的迅猛发展,为发展综合思维方式提供了有力的手段,使科学研究方法不断地完善。而以系统论方法、控制论方法和信息论方法为代表的系统科学方法,又为人类的科学认识提供了强有力的主观手段。它不仅突破了传统方法的局限性,而且深刻地改变了科学方法论的体系。这些新的方法,既可以作为经验方法,作为获得感性材料的方法来使用,也可以作为理论方法,作为分析感性材料上升到理性认识的方法来使用,而且作为后者的作用比前者更加明显。它们适用于科学认识的各个阶段,因此,我们称其为系统科学方法。
Ⅳ 研究现状是什么意思
即文献综述,要以查阅文献为前提,所查阅的文献应与研究问题相关,但又不能过于局限。与问题无关则流散无穷;
过于局限又违背了学科交叉、渗透原则,使视野狭隘,思维窒息。所谓综述的“综”即综合,综合某一学科领域在一定时期内的研究概况;“述”更多的并不是叙述,而是评述与述评,即要有作者自己的独特见解。
在写毕业论文时,对这些主要观点进行概要阐述,并指明具有代表性的作者和其发表观点的年份。还要分别国内外研究现状评述研究的不足之处,即还有哪方面没有涉及,是否有研究空白,或者研究不深入。
(5)分类方法研究现状扩展阅读:
新的知识会透过三种研究过程而得到:试探性研究:发掘问题、弄清问题;建设性研究:为问题提供解决方法;经验性研究:为解决方法的可能性提供实质证据。
学者常用的研究方法有:行动研究;实验;个案研究;参与者观察;经验和直觉;面谈;调查;统计分析;数学模型及模拟;原文分析;分类;制作地图;符号论;线索分析。
虽然研究题目各异,一般研究过程如下:
确立主题;确立命题;概念上的定义;运作上的定义;搜集数据;分析数据;结论,审查命题;大众常常误解以上的过程可以证明命题成立,实际上只可以直接证明命题不成立。证明命题成立是需要反复的测试和验证。
Ⅵ 算法研究现状
Farmer以及Deutsch和Journel虽然在1992年就提出了多点地质统计学方法,但其主要是通过在模拟退火中加入多点统计目标函数,然后对模拟图像进行反复迭代达到与输入统计参数匹配。该算法受到数据样板大小、模拟类型值多少的影响,此外迭代收敛也是一个不可避免的问题。受计算机性能以及算法的双重影响,模拟速度极其缓慢。因此对该方法的应用报道很少。1993年,Guardiano et al.提出了一种非迭代算法。它并不通过变差函数及克里金建立条件概率分布,而是直接利用数据样板扫描训练图像,并根据数据样板扫描获得的不同数据事件出现频率,代替数据事件的多点统计概率。即对于每一个未取样点,通过局部条件数据构成的数据事件,扫描训练图像推断局部数据事件联合未知点的条件概率(cpdf)。该方法属于序贯模拟的范畴,但由于每次条件概率的推断都需要重复扫描训练图像,对计算机性能要求相当高,因而该方法也一直停留在实验室阶段。
多点地质统计学得到快速发展,是源于搜索树概念的提出,即一种存储数据事件概率的数据结构。Strebelle(2000)对Guardiano et al.的算法进行了改进,提出将扫描训练图像获得的多点概率保存在“搜索树”里,随后的模拟采用序贯模拟的思路。在每模拟一个未知节点时,条件概率直接从“搜索树”里读取,大大缩短了运算机时,使得多点统计学储层建模真正意义上的推广成为可能。Strebelle将此算法命名为Snesim(Singlenormal equation simulation)。Snesim算法推出后,立刻受到建模界的关注,成为近几年储层建模热点。通过实际研究区建模,有些学者指出Snesim尚存在一些缺陷,表现在以下几个方面:
1)训练图像的平稳性问题。如何将实际储层中的大量非平稳信息表现为训练图像并能应用多点统计方法进行建模;
2)集成软数据(如地震)及评估训练图像或软数据的权重问题,尤其是它们在某种程度上不一致时;
3)储层形态合理再现问题。在现有算法中,当数据事件稀少时,往往通过去除最远条件节点方法来获得可靠的数据事件,而这种处理方法往往会导致储层构型再现失败;此外,训练图像过小将导致目标不连续,影响建模真实性;而训练图像过大则导致运行机时大,Snesim的实施存在困难;
4)多重网格搜索问题。两点统计学的多重网格搜索方法,不能改变粗网格模拟值,而条件数据重新分配具有相当大的误差,导致实际地质结构特征再现效果较差;
5)由于多点地质统计学仍然是基于像元的算法,所以只能在一定程度上重现目标的形状,对于更复杂的如尖角或者U型目标的应用则效果较差。
对于Snesim存在的问题,不同学者通过研究提出了各自的解决方案或建议。如非平稳性问题,Caers(2002)就采取类似于变差函数套合方式,通过伸缩和旋转变换,将非平稳的地质模式变化为平稳的地质模式,随后采用Snesim进行建模。再如数据样板再现,Liu(2003)就通过赋予不同节点不同权重,在数据事件稀少时,舍弃权重最小数据点以获得可靠的数据事件,而不是Snesim中去除最远条件节点的方式;Stien(2007)则允许删除条件数据点的值,而不是把它从条件数据集中移去。当所有节点被模拟后,再对那些被删掉值的点重新模拟。Suzuki(2007)提出了一种新的方法,即实时后处理方法(PRTT),其主要思想是在某一点上如果条件化失败,不是去掉一些条件数据缩小数据模板,而是返回到上一步,对前面模拟的数据进行修改,以达到数据事件合理化。在储层属性及数据事件多时,Arpat(2003)、Zhang(2003)等提出聚类的思想对相似数据事件进行归类,从而减少运行机时及不合理数据事件的出现概率。
储层建模是对地下沉积储层地质模式的再现。考虑到储层建模过程,实质上是对地下储层特征沉积模式的重建过程。如果将各种地质模式看成是一幅图像的构成单元,对储层预测也就是图像的重建过程。基于此思想,在2003年Stanford油藏预测中心举行的会议上,Arpat提出了Simpat(Simulation with pattenrs)多点地质统计学随机建模方法,即通过识别不同的地质模式,采用相似性判断方法,在建模时再现这些地质模式。Simpat模拟流程采用的也是序贯模拟的思路。由于是对地质模式处理,而地质模式是通过空间多个点构成的数据事件反映的,因此,在模拟实现时以整个数据事件赋值或者数据事件的子集取代了单个模拟网格节点的赋值。也就是说,在模拟过程中,在对某个未知值的预测过程中,除了模拟节点处赋值外,用来预测节点处值的条件数据的值也会有变化。Arpat通过这种数据事件整体赋值,实现储层地质模式再现。在数据事件选择上,Arpat摈弃了传统的概率推断、蒙特卡罗抽样的随机建模方法,而是借鉴计算机视觉及数字图像重建领域的知识,利用数据事件的相似性对数据事件进行选择。Arpat对此方法进行了较详细的论证,表明此方法能够较好再现储层结构特征。在此基础上,基于距离相似度的多点地质统计学(distance-based multiple point geostatistics)开始得到研究和发展(Suzuki et al.,2008;Scheidt et al.,2008;Honarkhah et al.,2010)。与传统基于统计抽样的模拟不同,基于距离相似度的方法直接计算数据事件的相似性,并用最相似的数据进行整体替换。
基于统计抽样以及储层模式分类的考虑,Zhang(2006)提出了Fitlersim(Filter-Based simulation)方法。他认为在训练图像中众多储层模式可以由几个滤波函数进行描述,由滤波函数获得储层模式的统计得分,在此基础上,进行储层模式的聚类,达到降低储层维数、提高运算效率的目的。此外,在聚类过程中考虑相似的储层模式出现的频率,使得储层预测具有统计学的意义。Yin(2009)则从目标骨架提取出发,约束多点统计模式选择,提出了基于储层骨架的多点地质统计学方法。