‘壹’ 集合的几种表示方法 要求举例
1、列举法
列举法就是将集合的元素逐一列举出来的方式[7]。例如,光学中的三原色可以用集合{红,绿,蓝}表示;由四个字母a,b,c,d组成的集合A可用A={a,b,c,d}表示,如此等等。
列举法还包括尽管集合的元素无法一一列举,但可以将它们的变化规律表示出来的情况。
如
(1)集合方法中的描述法是什么意思扩展阅读
一、描述法表示集合注意:
1、写清楚该集合代表元素的符号.例如,集合{x∈R|x<1}不能写成{x<1}。
2、所有描述的内容都要写在花括号内.例如,{x∈Z|x=2k},k∈Z,这种表达方式就不符合要求,需将k∈Z也写进花括号内,即{x∈Z|x=2k,k∈Z}。
3、在通常情况下,集合中竖线左侧元素的所属范围为实数集时可以省略不写.例如,方程x2-2x+1=0的实数解集可表示为{x∈R|x2-2x+1=0},也可写成{x|x2-2x+1=0}。
二、几种描述法的叙述的集合的差异:
①A={x|y=x2+1};②B={y|y=x2+1};③C={(x,y)|y=x2+1}。
1、由于三个集合的代表元素互不相同,故它们是互不相同的集合。
2、集合A={x|y=x2+1}的代表元素是x,且x∈R,所以{x|y=x2+1}=R,即A=R;集合B={y|y=x2+1}的代表元素是y,满足条件y=x2+1的y的取值范围是y≥1,所以{y|y=x2+1}={y|y≥1}。
3、集合C={(x,y)|y=x2+1}的代表元素是(x,y),是满足y=x2+1的数对.可以认为集合C是坐标平面内满足y=x2+1的点(x,y)构成的集合,其实就是抛物线y=x2+1的图象。
‘贰’ 集合表示的三种基本方法
集合三种表示方法是:列举法、描述法、图示法。集合的含义是:集合是一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集,其中各事物叫做集御漏合的元素或简称元,是具有某种特定性质的事物的总体。
列举法:把集合中的元素一一列举出来,并用花括号“{}”括起来表示集合的方法。
描述法:用集合所含元素的共同特征表示集合的方法。方法:在镇哪烂花括号内先写上表示这个集合元素的一般符号及取值范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
图示法:将集合的元素一一写入椭圆中的几何方法。
研究一个集合,首先要看集合中的代表元素,然后再看元素的限制条件缓丛,当集合用描述法表示时,注意弄清楚其元素表示的意义是什么。