A. labview设计语音识别系统如何提取特征参数
3.2
ECG特征点的提取方法
因为Peak
Detection
VI的输出中已包含有相应点的幅值、二阶导数及位置索引信息,在确定R峰点后,可进一步根据ECG的特点确定出其它各特征点。完整的ECG特征点判别方法及步骤为:
(1)幅值最大或二阶导数最小(或两者同时满足)的波峰点判定为R峰点;
(2)R峰点之前的第一个小于零的波谷点(Valley)为Q点;
(3)R峰点之后第一个小于零的波谷点(Valley)为S点;
(4)Q点之前合理时限内的最大波峰点为P点;
(5)S点之后合理时限内的最大波峰点为T点。
(U波幅度较小且目前对其认识还不清楚,本文不作讨论。)4、基于虚拟仪器LabVIEW8.2的编程实现
按图2流程编制LabVIEW8.2程序,考虑到实际ECG波形中存在干扰,阈值(Threshold)不宜取零。程序中采用本周期段数据中最小波谷点的0.02倍作为Valley点阈值,最大波峰点的0.03倍作为Peak点的阈值,这样可将基线附近的绝大多数高频干扰点避开,这些干扰点将不会出现在输出序列中
B. 语音识别特征参数提取
你意思是已经有原始特征集了还是要收集原始特征集? 如果是前者就是KL变换用的多
C. Matlab怎样提取波形的特征参数
你好,你是需要提取振动模态参数吗?对于模态参数来说,提取的方法各种各样:随机子空间算法、特征系统实现法、最小二乘负指数法等、ITD法等。具体的问题你可以看一下曹树谦主编的《振动模态结构分析-理论、实验与应用》,这本书讲解比较全面。
D. 如何从特征参数中提取信号特征频率
采样频率越高,时域波形的细节变化越明显,分析频率的上限越高,反之亦然。
E. 怎样采用像素特征提取的方法,对图像进行逐行逐列扫描,遇到黑点时提取特征值1,遇到白色像素点提取特征值0
for(row=0;row<width;row++)
for(col=0;col<height;col++)
result(row,col)=(data(row,col)==0L)?1:0;
F. 如何提取特征三类:韵律特征,音质特征,mfcc参数
特征提取
一、 low-level,主要是MFCC,以及基于MFCC并对其优化的一些方法。 1、 MFCC
2、 抗噪声较优的方法:
WMVDR:warped minimum variance distortionless response
Multitaper MFCC:思想是用multiple windows(tapers)来代替汉明窗。
MHEC:mean Hilbert envelope coefficients.此方法对抗汽车噪声很有用。 3、 对抗回声较优的方法(reverberant robustness):
FDLP: frequency domain linear prediction
4、 融合MFCC的方法(fusion with MFCC):
SCF/SCM: spectral centroid frequency/magnitude
该方法的提出,是考虑到MFCC子带中无法体现能量分布,而FM(frequency molation)计算量太大。
FFV: fundamental frequency variation,该方法同时考虑到了MFCC和韵律(prosodic)
信息.
HSCC: Harmonic structure cepstral coefficient,该方法体现了能量分布,实现用到了
LDA。
二、 high-level,主要是基于phone ,syllable ,word 一级。 1、 韵律特征(prosodic features)
目前研究的有 pitch distribution和non-uniform extraction region features(NERFs) 2、 音素特征(phonetic features)
建模可以用N-gram,也可以用SVM建模。 3、 语法特征(lexical features)
词一级的N-gram,建模的方法有LLR(log likelihood ration)和SVM.SVM的效果应该更好一些。 4、 cepstral-derived features
实现用最大似然线性回归MLLR(maximum likelihood linear regression)
一些特征: MFCC
PLP 感知线性预测 LPC 线性预测系数 过零率 LSP 短时能量 子带流量比 亮度 基频
频谱峰值点 SDC CEP 线谱对 频谱能量
Delt(MFCC)
G. 用HOG对图像进行特征提取,对于参数Params = [9 180 10 0 0]; 这几个数都代表什么意思啊
C#开发语言中 params 是关键字,可以指定在参数数目可变处采用参数的方法参数。在函数的参数数目可变而执行的代码差异很小的时候很有用!
params关键字表示函数的参数是可变个数的,即可变的方法参数,例如Console.WriteLine( "{0},{1} ",i,j); 就像DELPHI 里 WRITELN 函数一样,用于表示类型相同,但参数数量不确定.
在方法声明中的 params 关键字之后不允许任何其他参数,并且在方法声明中只允许一个 params 关键字。
关于参数数组,需掌握以下几点。
(1)若形参表中含一个参数数组,则该参数数组必须位于形参列表的最后;
(2)参数数组必须是一维数组;
(3)不允许将params修饰符与ref和out修饰符组合起来使用;
(4)与参数数组对应的实参可以是同一类型的数组名,也可以是任意多个与该数组的元素属于同一类型的变量;
(5)若实参是数组则按引用传递,若实参是变量或表达式则按值传递。
(6)用法:可变的方法参数,也称数组型参数,适合于方法的参数个数不知的情况,用于传递大量的数组集合参数;当使用数组参数时,可通过使用params关键字在形参表中指定多种方法参数,并在方法的参数表中指定一个数组,形式为:方法修饰符返回类型方法名(params类型[]变量名)
{
方法体
}
希望对你有用
H. 图像的特征提取都有哪些算法
常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。
一 颜色特征
(一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。
(二)常用的特征提取与匹配方法
(1) 颜色直方图
其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。
最常用的颜色空间:RGB颜色空间、HSV颜色空间。
颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。
(2) 颜色集
颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从 RGB颜色空间转化成视觉均衡的颜色空间(如 HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系
(3) 颜色矩
这种方法的数学基础在于:图像中任何的颜色分布均可以用它的矩来表示。此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(mean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。
(4) 颜色聚合向量
其核心思想是:将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。
(5) 颜色相关图
二 纹理特征
(一)特点:纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。在模式匹配中,这种区域性的特征具有较大的优越性,不会由于局部的偏差而无法匹配成功。作为一种统计特征,纹理特征常具有旋转不变性,并且对于噪声有较强的抵抗能力。但是,纹理特征也有其缺点,一个很明显的缺点是当图像的分辨率变化的时候,所计算出来的纹理可能会有较大偏差。另外,由于有可能受到光照、反射情况的影响,从2-D图像中反映出来的纹理不一定是3-D物体表面真实的纹理。
例如,水中的倒影,光滑的金属面互相反射造成的影响等都会导致纹理的变化。由于这些不是物体本身的特性,因而将纹理信息应用于检索时,有时这些虚假的纹理会对检索造成“误导”。
在检索具有粗细、疏密等方面较大差别的纹理图像时,利用纹理特征是一种有效的方法。但当纹理之间的粗细、疏密等易于分辨的信息之间相差不大的时候,通常的纹理特征很难准确地反映出人的视觉感觉不同的纹理之间的差别。
(二)常用的特征提取与匹配方法
纹理特征描述方法分类
(1)统计方法统计方法的典型代表是一种称为灰度共生矩阵的纹理特征分析方法Gotlieb 和 Kreyszig 等人在研究共生矩阵中各种统计特征基础上,通过实验,得出灰度共生矩阵的四个关键特征:能量、惯量、熵和相关性。统计方法中另一种典型方法,则是从图像的自相关函数(即图像的能量谱函数)提取纹理特征,即通过对图像的能量谱函数的计算,提取纹理的粗细度及方向性等特征参数
(2)几何法
所谓几何法,是建立在纹理基元(基本的纹理元素)理论基础上的一种纹理特征分析方法。纹理基元理论认为,复杂的纹理可以由若干简单的纹理基元以一定的有规律的形式重复排列构成。在几何法中,比较有影响的算法有两种:Voronio 棋盘格特征法和结构法。
(3)模型法
模型法以图像的构造模型为基础,采用模型的参数作为纹理特征。典型的方法是随机场模型法,如马尔可夫(Markov)随机场(MRF)模型法和 Gibbs 随机场模型法
(4)信号处理法
纹理特征的提取与匹配主要有:灰度共生矩阵、Tamura 纹理特征、自回归纹理模型、小波变换等。
灰度共生矩阵特征提取与匹配主要依赖于能量、惯量、熵和相关性四个参数。Tamura 纹理特征基于人类对纹理的视觉感知心理学研究,提出6种属性,即:粗糙度、对比度、方向度、线像度、规整度和粗略度。自回归纹理模型(simultaneous auto-regressive, SAR)是马尔可夫随机场(MRF)模型的一种应用实例。
三 形状特征
(一)特点:各种基于形状特征的检索方法都可以比较有效地利用图像中感兴趣的目标来进行检索,但它们也有一些共同的问题,包括:①目前基于形状的检索方法还缺乏比较完善的数学模型;②如果目标有变形时检索结果往往不太可靠;③许多形状特征仅描述了目标局部的性质,要全面描述目标常对计算时间和存储量有较高的要求;④许多形状特征所反映的目标形状信息与人的直观感觉不完全一致,或者说,特征空间的相似性与人视觉系统感受到的相似性有差别。另外,从 2-D 图像中表现的 3-D 物体实际上只是物体在空间某一平面的投影,从 2-D 图像中反映出来的形状常不是 3-D 物体真实的形状,由于视点的变化,可能会产生各种失真。
(二)常用的特征提取与匹配方法
Ⅰ几种典型的形状特征描述方法
通常情况下,形状特征有两类表示方法,一类是轮廓特征,另一类是区域特征。图像的轮廓特征主要针对物体的外边界,而图像的区域特征则关系到整个形状区域。
几种典型的形状特征描述方法:
(1)边界特征法该方法通过对边界特征的描述来获取图像的形状参数。其中Hough 变换检测平行直线方法和边界方向直方图方法是经典方法。Hough 变换是利用图像全局特性而将边缘像素连接起来组成区域封闭边界的一种方法,其基本思想是点—线的对偶性;边界方向直方图法首先微分图像求得图像边缘,然后,做出关于边缘大小和方向的直方图,通常的方法是构造图像灰度梯度方向矩阵。
(2)傅里叶形状描述符法
傅里叶形状描述符(Fourier shape descriptors)基本思想是用物体边界的傅里叶变换作为形状描述,利用区域边界的封闭性和周期性,将二维问题转化为一维问题。
由边界点导出三种形状表达,分别是曲率函数、质心距离、复坐标函数。
(3)几何参数法
形状的表达和匹配采用更为简单的区域特征描述方法,例如采用有关形状定量测度(如矩、面积、周长等)的形状参数法(shape factor)。在 QBIC 系统中,便是利用圆度、偏心率、主轴方向和代数不变矩等几何参数,进行基于形状特征的图像检索。
需要说明的是,形状参数的提取,必须以图像处理及图像分割为前提,参数的准确性必然受到分割效果的影响,对分割效果很差的图像,形状参数甚至无法提取。
(4)形状不变矩法
利用目标所占区域的矩作为形状描述参数。
(5)其它方法
近年来,在形状的表示和匹配方面的工作还包括有限元法(Finite Element Method 或 FEM)、旋转函数(Turning Function)和小波描述符(Wavelet Descriptor)等方法。
Ⅱ 基于小波和相对矩的形状特征提取与匹配
该方法先用小波变换模极大值得到多尺度边缘图像,然后计算每一尺度的 7个不变矩,再转化为 10 个相对矩,将所有尺度上的相对矩作为图像特征向量,从而统一了区域和封闭、不封闭结构。
四 空间关系特征
(一)特点:所谓空间关系,是指图像中分割出来的多个目标之间的相互的空间位置或相对方向关系,这些关系也可分为连接/邻接关系、交叠/重叠关系和包含/包容关系等。通常空间位置信息可以分为两类:相对空间位置信息和绝对空间位置信息。前一种关系强调的是目标之间的相对情况,如上下左右关系等,后一种关系强调的是目标之间的距离大小以及方位。显而易见,由绝对空间位置可推出相对空间位置,但表达相对空间位置信息常比较简单。
空间关系特征的使用可加强对图像内容的描述区分能力,但空间关系特征常对图像或目标的旋转、反转、尺度变化等比较敏感。另外,实际应用中,仅仅利用空间信息往往是不够的,不能有效准确地表达场景信息。为了检索,除使用空间关系特征外,还需要其它特征来配合。
(二)常用的特征提取与匹配方法
提取图像空间关系特征可以有两种方法:一种方法是首先对图像进行自动分割,划分出图像中所包含的对象或颜色区域,然后根据这些区域提取图像特征,并建立索引;另一种方法则简单地将图像均匀地划分为若干规则子块,然后对每个图像子块提取特征,并建立索引。
I. 用什么数学模型可以提取特征参数
我的数学基础也比较差,大一数学都是刚及格,然后考研数一考了120多分,不是很好,不过我自己挺满意的。我是先过一遍课本,细枝末节的,搞明白了,然后就是李永乐的复习全书,难度适中,对于其中很偏的,我们底子差,也不用说全都透透的,掌握个80%,这本书,我做了一遍,梳理了一遍,然后错题什么的整理了一遍,最后就是刷真题了。真题一天一套,这是最后冲刺的时候练手感的。 说的好像做了很多,其实我也就从7月份开始准备的,每天要有计划,安排的东西都要落实下去,是真的会做了,数学这东西,就是要会做题,做得出来,什么都好说。 反复的练习,反复的做题很重要,一定不要默默地看,这样子费时费力,但是眼高手低,一到做题,那个手感,还是练出来的。练到最后,什么题型,什么方法,烂熟于心。
J. 光谱特征分析与提取
6.1.1 基于光谱重排的光谱特征提取方法
首先,针对光谱吸收特征受噪声影响较大的问题,对数据进行最小噪声分量正变换,消除噪声后,再将最小噪声分量特征空间的数据变换回原数据空间,即最小噪声分量反变换;然后针对单个吸收不稳定、光照等对光谱幅值影响较大等问题,提出在连续去除的基础上,利用所有吸收特征并将光谱吸收特征按吸收深度由强至弱重排,从而实现稳定、可靠的光谱特征提取。
(1)最小噪声分量变换
在实际应用中,地物光谱吸收特征对噪声敏感,因此,在进行特征提取之前,研究中引入了最小噪声分量变换(Minimum Noise Fraction,MNF),去除噪声对特征提取影响的同时去除数据相关性。
MNF变换是Green等人在主成分分析理论的基础上改进得到的。通常被用来去除数据中的噪声成分,同时确定高光谱数据的本征维数,从而减少后续处理的运算量。
该方法以噪声协方差的估计矩阵为基础,调整噪声的取值并去除其波段间的相关性。在结果数据中噪声的方差为1,并且在波段间无相关性。假设高光谱数据X=[x1,x2,…,xm]T可以表示为
X = Z + N (6.1)
式中:矩阵Z,N分别是理想信号和噪声矩阵,且彼此不相关;第i 波段的噪声分量定义为NFi =
∑X,∑Z和∑N分别为可观测信号、理想信号及噪声的协方差矩阵,并且有
∑X =∑XZ +∑N (6.2)
假设F为∑N的白化矩阵,∑N的特征值矩阵为
高光谱遥感技术原理及矿产与能源勘查应用
高光谱遥感技术原理及矿产与能源勘查应用
式中:I为单位矩阵,矩阵
假设∑w=F T∑X F为噪声白化之后的观测数据的协方差矩阵,∑w矩阵特征值组成的对角矩阵为
高光谱遥感技术原理及矿产与能源勘查应用
于是得到最小噪声分量变换矩阵:
高光谱遥感技术原理及矿产与能源勘查应用
由式(6.6)得观测信号最小噪声分量变换后的矩阵为
T = MTX (6.7)
经过式(6.7)变换之后,可观测信号各个波段间彼此不相关,且各个波段按信噪比由大到小排列
(2)光谱重排
不同地物的光谱信息是不相同的,因此,高光谱遥感提供的地物精细的光谱信息可以直接作为特征提取与目标识别的依据,比如利用红边、绿峰、NDVI等特征可以提取植被。但当不同地物之间的光谱在形状、幅值、变化趋势等指标大致相同的时候(即光谱特征相似),提取区分不同地物显着特征是非常困难的,即地物之间的不相关性均匀地分布在各个波段;此外,由于单个光谱吸收特征容易受到光照条件、大气等影响使得提取的光谱特征参量不稳定。因此,针对以上问题,研究中提出了基于光谱重排的特征提取方法,根据光谱吸收深度的由强到弱排列,剩余的没有吸收特征波段则按波长由小到大排列。
光谱重排的实现过程如下:
1)通过不同阶数的微分值确定的光谱弯曲点、最大最小光谱反射率及其波长位置,计算连续统去除后目标光谱的吸收位置λM 及其反射率值ρM、吸收深度H、吸收左右肩(ρL,ρR)及其反射值(λL,λR),并且吸收深度H的计算公式如下:
H = d × ρL +(1-d)× ρR-ρM (6.8)
d =(λL-λM)/(λR-λL) (6.9)
2)将目标光谱按照吸收深度H由强至弱进行排列,若无吸收特征,则按波长由小到大进行排列;
3)以目标光谱为基谱,将图像数据光谱按照目标光谱重排后的波长进行排序。
该方法有效地利用了高光谱遥感数据提供的地物所有吸收特征,增加了特征提取的稳定性和可靠性;并且通过大量的实验发现,任何两种不同地物的光谱通过光谱重排之后,区分不同地物的显着特征更加明显,增加了类别间的可分性。
(3)算法实现
基于光谱重排的抗噪声光谱特征提取方法的实现流程如图6.1所示。该方法中为了消除噪声对光谱吸收特征参数提取的影响,引入了MNF变换;为了有效抑制由于光照条件、传感器等因素产生的光谱幅值变化对光谱特征提取的影响,引入了连续统去除操作;为了克服单一特征不稳定、不同地物光谱特征相似等问题,提出了光谱重排的方法。
(4)实验分析
为了验证上述研究中方法的有效性和可行性,采用AVIRIS航空高光谱数据进行实验分析,并利用光谱之间的光谱角进行可分性的定量化分析。
实验数据为1995年7月在美国内华达州Cuprite矿区AVIRIS航空高光谱数据,并且使用ATREM方法校正得到了地表反射率,波段范围为1990~2480nm,空间分辨率20m,光谱分辨率10nm,数据大小为255 × 350 × 50。
图6.1 光谱特征提取方法实现流程
该研究区域的矿物分布图如图6.2(a)所示,从数据中提取高岭石光谱曲线如图6.2(b)所示,光谱重排后的光谱如图6.2(c)所示。高岭石、明矾石、布丁石及热液硅石特征提取前的光谱比较如图6.3(a)所示,以高岭石光谱为基谱,光谱重排后四种矿物的光谱特征如图6.3(b)(图中的光谱曲线纵坐标做了平移处理)所示。利用光谱角的方法进行四种矿物光谱重排前后可分性的比较,结果如表6.1和表6.2所示。
图6.2 高岭石矿物光谱比较
图6.3 四种矿物光谱比较
表6.1 原始光谱数据四种矿物的可分性
表6.2 重排后光谱数据四种矿物的可分性
由图6.2和图6.3可以看出,经光谱重排后,高岭石矿物光谱吸收特征按吸收深度的强弱进行了重新排列,较好的显现了高光谱所有吸收特征及主次吸收特征的变化;并且明矾石与高岭石矿物在2200 nm的光谱特征由于吸收宽度等不同而能将二者较好的区分。由图6.3与表6.2可以看出,经过光谱重排后,高岭石与其他三种矿物的可分性均存在不同程度的增大,特别是,高岭石与明矾石的可分性从0.1978增加为0.225;为后续矿物识别与分类等处理奠定了良好的基础。
图6.4 SAM方法矿物识别结果
为了进一步验证该方法的性能,进行了利用该方法以及基于SAM方法的矿物识别结果比对分析。利用原始光谱进行光谱角匹配识别的结果如图6.4所示。利用基于光谱重排的抗噪声特征提取方法得到的数据进行矿物识别,结果如图6.5 所示。可以看出,两种方法均能实现四种主要蚀变矿物的识别,但是,采用原始光谱进行识别的结果中存在着一定程度的矿物混淆,并且布丁石的识别结果混淆尤其明显;而在研究方法中进行特征提取基础上得到的矿物识别结果矿物混淆明显降低,取得了较好的识别结果,证明了上述研究中提出的方法的优越性能。
图6.5 基于光谱重排特征提取方法矿物识别结果
6.1.2 吸收波长加权匹配方法
光谱曲线往往包含了许多由噪声引入的无效特征,利用同类地物光谱特征求交,实现了有效吸收波长、吸收深度的提取;常用的SAFP匹配方法中,只有参考光谱和测试光谱的特征在相同的波长位置时,两条光谱才被判为相同,匹配准则比较苛刻,导致由于噪声等因素影响光谱特征而无法匹配,吸收波长加权匹配法利用偏移加权矩阵实现了吸收波长的容偏匹配,大大增加了匹配的准确性,降低了外界因素对吸收参量特征的影响。
对同类地物光谱曲线特征求交,得出识别地物的有效特征;地物光谱的诊断吸收特征总是出现在特定的波段上,在某些情况下会有局部的偏移;对吸收特征的中心波长进行匹配,并容许一定程度的波段偏移,容许程度用偏移加权矩阵来度量,能够对地物光谱实现精确的识别。考虑到实际应用噪声及系统误差引入的干扰,用吸收深度对单个中心波长进行加权,吸收深度小的吸收特征对整体相似度的贡献小,吸收深度大的吸收特征对整体相似度的贡献大,这样一定程度上抑制了无法去除的非有效特征的影响。
(1)吸收波长加权匹配的实现
有效吸收特征的精确提取和容偏匹配实现流程如图6.6所示,具体包含以下几个步骤:
1)对参考光谱连续统去除。利用导数法确定各吸收特征的中心位置和左右肩对应的波长后,利用下列公式提取吸收特征中心波长和吸收深度:
高光谱遥感技术原理及矿产与能源勘查应用
式中:
没有标准参考光谱时,参考光谱通过训练样本得到。通过上述方法提取各条参考光谱的吸收中心波长和吸收深度后,对所有训练样本的吸收特征参数求交,方法如下:
光谱A和B的所有吸收特征为feature_a,feature_b,A的第i个波段上存在特征,对feature_b计算:
judge = Weight·feature_b([i-BandOffset:i + BandOffset]) (6.11)
如果,judge>0 ,则光谱A的第i个波段上的特征为有效特征。
得到参考光谱共有的有效特征,此处需要记录的是有效特征的位置和吸收深度的大小,保存在向量EffFeatureIndex和Depth中。
2)提取未知光谱所有吸收位置和对应的吸收深度特征,记录在FeaturePos和FeatureDepth;
图6.6 中心波长加权匹配流程图
未知光谱特征与参考光谱有效特征按位匹配,匹配方法包含两个参数,容许波段偏移数BandOffset和偏移加权矩阵Weight。
3)找到参考光谱第i个特征位置,生成特征检验区间:
TestIndex =(i-BandOffset):(i + BandOffset) (6.12)
计算特征检验值:
TestValue = Weight·FeatureDepth(TestIndex) (6.13)
TestValue不为0 ,则说明未知光谱对应位置存在有效特征,反之则不存在,未知光谱中的识别特征所在波段记录在向量EffIndex中。
4)重复3)的过程,直到对未知光谱的所有有效特征进行了检测,未知光谱中识别特征存在的波段记录在向量EffIndex中。
5)对吸收位置用吸收深度加权匹配,匹配度的计算公式如下:
高光谱遥感技术原理及矿产与能源勘查应用
6)根据匹配度degree的值判断未知光谱与参考光谱的近似程度,阈值Thresh手动选择,根据经验,在用吸收深度加权的匹配方法中,Thresh=0.8就能获得较高的识别率。
用吸收深度加权对吸收特征中心波长进行容偏匹配的关键在于:有效吸收特征的准确提取和偏移加权矩阵Weight或容许波段偏移数目BandOffset的选择,反射率曲线所有吸收特征的精确提取是前提,偏移加权矩阵的确定需要根据对像光谱的采样间隔来确定,Weight的分量的个数为2 × BandOffset+1;并且有效特征提取和特征识别过程使用的偏移加权矩阵Weight可以不同,光谱采样间隔较大时,可以选择Weight的各个分量服从高斯分布。
(2)基于USGS光谱库数据的实验与结果分析
图6.7(a)为USGS矿物光谱库中六条绿泥石连续统去除后反射率曲线;波段偏移参数BandOffset=1,对应的容偏矩阵Weight=[1,1,1];即两条光谱的特征相差一个波段以下认为该特征为有效特征;绿泥石的有效特征见图6.7(b),用方框标记出了吸收谷的波长位置;图6.7(c)给出了利用吸收波长加权匹配方法得到的绿泥石有效特征;图6.7(d)给出了绿泥石和阳起石反射率光谱。
图6.7 有效特征提取
匹配加权矩阵Weight=[1,1,1]表示容许两端偏移,Weight=[0.1,1,0.1]表示不容许偏移;两情况对应的相似度见表6.3和表6.4。对比表6.3和表6.4的相似度值可以看出,容许波段偏移后,绿泥石光谱间的相似度明显变大。利用图6.7(c)的有效特征对图6.7(d)所示的阳起石和绿泥石光谱进行Weight=[1,1,1]匹配,近似度见表6.5,用绿泥石的有效光谱能有效的识别出绿泥石光谱与阳起石光谱的差异。
表6.3 绿泥石光谱识别Weight=[1,1,1]
表6.4 绿泥石光谱识别Weight=[0.1,1,0.1]
表6.5 阳起石和绿泥石识别Weight=[1,1,1]
(3)基于AVIRIS数据的实验与结果分析
利用内华达州Cuprite矿区的AVIRIS数据进行基于吸收波长加权提取方法实现矿物匹配识别研究。利用的矿物端元光谱如图6.8所示,识别结果如图6.9所示。
从地质图6.2(a)与结果图6.9比较可以看出,该方法对具有明显光谱吸收特征的明矾石和高岭石矿物具有较高精度的识别效果,但是对于吸收特征较宽、较浅的白云母和布丁石的识别效果则较差。
图6.8 算法中用到的端元光谱
图6.9 基于吸收波长加权特征提取的矿物匹配识别结果