导航:首页 > 研究方法 > 统计的研究方法的区别

统计的研究方法的区别

发布时间:2024-04-06 19:52:22

A. 统计学的基本方法有哪几种

1、大量观察法:是指从社会现象的旦知总体出发,对其全部单位或足够多数单位进行数量观察的统计方法;

2、统计分组法:是指根据统计研究的任务,将所研究的社会经济现象总体按照一定标志划分为若干组的方法;

3、综合指标法:是指运用各种综合统计指标,从具体数量方面对现实社会经济总体的规模及特征所进行的概括和分析的方法;

4、时间序列分析法:是一态姿种动态数据处理的统计方法,该方法基于随机过程理论和数理统计学方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题;

5、指数分析法:是利用指数体系,对现模闭消象的综合变动从数量上分析其受各因素影响的方向,程度及绝对数量;

6、相关分析法:是测定经济现象之间相关关系的规律性,并据以进行预测和控制的分析方法

7、抽样推断法:是在根据随机原则从总体中抽取部分实际数据的基础上,运用数理统计方法,对总体某一现象的数量性作出具有一定可靠程度的估计判断。

B. 统计学方法有哪些

一、描述统计

描述统计是通过图表或数学方法,对数据资料进行整理、分析,并对数据的分布状态、数字特征和随机变量之间关系进行估计和描述的方法。描述统计分为集中趋势分析和离中趋势分析和相关分析三大部分。

集中趋势分析:集中趋势分析主要靠平均数、中数、众数等统计指标来表示数据的集中趋势。例如被试的平均成绩多少?是正偏分布还是负偏分布?

离中趋势分析:离中趋势分析主要靠全距、四分差、平均差、方差(协方差:用来度量两个随机变量关系的统计量)、标准差等统计指标来研究数据的离中趋势。例如,我们想知道两个教学班的语文成绩中,哪个班级内的成绩分布更分散,就可以用两个班级的四分差或百分点来比较。

相关分析:相关分析探讨数据之间是否具有统计学上的关联性。这种关系既包括两个数据之间的单一相关关系——如年龄与个人领域空间之间的关系,也包括多个数据之间的多重相关关系——如年龄、抑郁症发生率、个人领域空间之间的关系;既包括A大B就大(小),A小B就小(大)的直线相关关系,也可以是复杂相关关系(A=Y-B*X);既可以是A、B变量同时增大这种正相关关系,也可以是A变量增大时B变量减小这种负相关,还包括两变量共同变化的紧密程度——即相关系数。实际上,相关关系唯一不研究的数据关系,就是数据协同变化的内在根据——即因果关系。获得相关系数有什么用呢?简而言之,有了相关系数,就可以根据回归方程,进行A变量到B变量的估算,这就是所谓的回归分析,因此,相关分析是一种完整的统计研究方法,它贯穿于提出假设,数据研究,数据分析,数据研究的始终。

例如,我们想知道对监狱情景进行什么改造,可以降低囚徒的暴力倾向。我们就需要将不同的囚舍颜色基调、囚舍绿化程度、囚室人口密度、放风时间、探视时间进行排列组合,然后让每个囚室一种实验处理,然后用因素分析法找出与囚徒暴力倾向的相关系数最高的因素。假定这一因素为囚室人口密度,我们又要将被试随机分入不同人口密度的十几个囚室中生活,继而得到人口密度和暴力倾向两组变量(即我们讨论过的A、B两列变量)。然后,我们将人口密度排入X轴,将暴力倾向分排入Y轴,获得了一个很有价值的图表,当某典狱长想知道,某囚舍扩建到N人/间囚室,暴力倾向能降低多少。我们可以当前人口密度和改建后人口密度带入相应的回归方程,算出扩建前的预期暴力倾向和扩建后的预期暴力倾向,两数据之差即典狱长想知道的结果。

推论统计:

推论统计是统计学乃至于心理统计学中较为年轻的一部分内容。它以统计结果为依据,来证明或推翻某个命题。具体来说,就是通过分析样本与样本分布的差异,来估算样本与总体、同一样本的前后测成绩差异,样本与样本的成绩差距、总体与总体的成绩差距是否具有显着性差异。例如,我们想研究教育背景是否会影响人的智力测验成绩。可以找100名24岁大学毕业生和100名24岁初中毕业生。采集他们的一些智力测验成绩。用推论统计方法进行数据处理,最后会得出类似这样儿的结论:“研究发现,大学毕业生组的成绩显着高于初中毕业生组的成绩,二者在0.01水平上具有显着性差异,说明大学毕业生的一些智力测验成绩优于中学毕业生组。”

其中,如果用EXCEL 来求描述统计。其方法是:工具-加载宏-勾选"分析工具库",然后关闭Excel然后重新打开,工具菜单就会出现"数据分析"。描述统计是“数据分析”内一个子菜单,在做的时候,记得要把方格输入正确。最好直接点选。

2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W检验、动差法。

二、假设检验

1、参数检验

参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。

1)U验 :使用条件:当样本含量n较大时,样本值符合正态分布

2)T检验 使用条件:当样本含量n较小时,样本值符合正态分布

A 单样本t检验:推断该样本来自的总体均数μ与已知的某一总体均数μ0 (常为理论值或标准值)有无差别;

B 配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似;

C 两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。

2、非参数检验

非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。

适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。

A 虽然是连续数据,但总体分布形态未知或者非正态;

B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下;

主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。

三、信度分析

介绍:信度(Reliability)即可靠性,它是指采用同样的方法对同一对象重复测量时所得结果的一致性程度。信度指标多以相关系数表示,大致可分为三类:稳定系数(跨时间的一致性),等值系数(跨形式的一致性)和内在一致性系数(跨项目的一致性)。信度分析的方法主要有以下四种:重测信度法、复本信度法、折半信度法、α信度系数法。

方法:(1)重测信度法编辑:这一方法是用同样的问卷对同一组被调查者间隔一定时间重复施测,计算两次施测结果的相关系数。显然,重测信度属于稳定系数。重测信度法特别适用于事实式问卷,如性别、出生年月等在两次施测中不应有任何差异,大多数被调查者的兴趣、爱好、习惯等在短时间内也不会有十分明显的变化。如果没有突发事件导致被调查者的态度、意见突变,这种方法也适用于态度、意见式问卷。由于重测信度法需要对同一样本试测两次,被调查者容易受到各种事件、活动和他人的影响,而且间隔时间长短也有一定限制,因此在实施中有一定困难。

(2)复本信度法编辑:让同一组被调查者一次填答两份问卷复本,计算两个复本的相关系数。复本信度属于等值系数。复本信度法要求两个复本除表述方式不同外,在内容、格式、难度和对应题项的提问方向等方面要完全一致,而在实际调查中,很难使调查问卷达到这种要求,因此采用这种方法者较少。

(3)折半信度法编辑:折半信度法是将调查项目分为两半,计算两半得分的相关系数,进而估计整个量表的信度。折半信度属于内在一致性系数,测量的是两半题项得分间的一致性。这种方法一般不适用于事实式问卷(如年龄与性别无法相比),常用于态度、意见式问卷的信度分析。在问卷调查中,态度测量最常见的形式是5级李克特(Likert)量表(李克特量表(Likert scale)是属评分加总式量表最常用的一种,属同一构念的这些项目是用加总方式来计分,单独或个别项目是无意义的。它是由美国社会心理学家李克特于1932年在原有的总加量表基础上改进而成的。该量表由一组陈述组成,每一陈述有"非常同意"、"同意"、"不一定"、"不同意"、"非常不同意"五种回答,分别记为5、4、3、2、1,每个被调查者的态度总分就是他对各道题的回答所得分数的加总,这一总分可说明他的态度强弱或他在这一量表上的不同状态。)。进行折半信度分析时,如果量表中含有反意题项,应先将反意题项的得分作逆向处理,以保证各题项得分方向的一致性,然后将全部题项按奇偶或前后分为尽可能相等的两半,计算二者的相关系数(rhh,即半个量表的信度系数),最后用斯皮尔曼-布朗(Spearman-Brown)公式:求出整个量表的信度系数(ru)。

(4)α信度系数法编辑:Cronbach
α信度系数是目前最常用的信度系数,其公式为:

α=(k/(k-1))*(1-(∑Si^2)/ST^2)

其中,K为量表中题项的总数, Si^2为第i题得分的题内方差, ST^2为全部题项总得分的方差。从公式中可以看出,α系数评价的是量表中各题项得分间的一致性,属于内在一致性系数。这种方法适用于态度、意见式问卷(量表)的信度分析。

总量表的信度系数最好在0.8以上,0.7-0.8之间可以接受;分量表的信度系数最好在0.7以上,0.6-0.7还可以接受。Cronbach 's alpha系数如果在0.6以下就要考虑重新编问卷。

检査测量的可信度,例如调查问卷的真实性。

分类:

1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度

2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。

四、列联表分析

列联表是观测数据按两个或更多属性(定性变量)分类时所列出的频数表。

简介:一般,若总体中的个体可按两个属性A、B分类,A有r个等级A1,A2,…,Ar,B有c个等级B1,B2,…,Bc,从总体中抽取大小为n的样本,设其中有nij个个体的属性属于等级Ai和Bj,nij称为频数,将r×c个nij排列为一个r行c列的二维列联表,简称r×c表。若所考虑的属性多于两个,也可按类似的方式作出列联表,称为多维列联表。

列联表又称交互分类表,所谓交互分类,是指同时依据两个变量的值,将所研究的个案分类。交互分类的目的是将两变量分组,然后比较各组的分布状况,以寻找变量间的关系。

用于分析离散变量或定型变量之间是否存在相关。

列联表分析的基本问题是,判明所考察的各属性之间有无关联,即是否独立。如在前例中,问题是:一个人是否色盲与其性别是否有关?在r×с表中,若以pi、pj和pij分别表示总体中的个体属于等级Ai,属于等级Bj和同时属于Ai、Bj的概率(pi,pj称边缘概率,pij称格概率),“A、B两属性无关联”的假设可以表述为H0:pij=pi·pj,(i=1,2,…,r;j=1,2,…,с),未知参数pij、pi、pj的最大似然估计(见点估计)分别为行和及列和(统称边缘和)

为样本大小。根据K.皮尔森(1904)的拟合优度检验或似然比检验(见假设检验),当h0成立,且一切pi>0和pj>0时,统计量的渐近分布是自由度为(r-1)(с-1) 的Ⅹ分布,式中Eij=(ni·nj)/n称为期望频数。当n足够大,且表中各格的Eij都不太小时,可以据此对h0作检验:若Ⅹ值足够大,就拒绝假设h0,即认为A与B有关联。在前面的色觉问题中,曾按此检验,判定出性别与色觉之间存在某种关联。

需要注意:

若样本大小n不很大,则上述基于渐近分布的方法就不适用。对此,在四格表情形,R.A.费希尔(1935)提出了一种适用于所有n的精确检验法。其思想是在固定各边缘和的条件下,根据超几何分布(见概率分布),可以计算观测频数出现任意一种特定排列的条件概率。把实际出现的观测频数排列,以及比它呈现更多关联迹象的所有可能排列的条件概率都算出来并相加,若所得结果小于给定的显着性水平,则判定所考虑的两个属性存在关联,从而拒绝h0。

对于二维表,可进行卡方检验,对于三维表,可作Mentel-Hanszel分层分析。

列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。

五、相关分析

研究现象之间是否存在某种依存关系,对具体有依存关系的现象探讨相关方向及相关程度。

1、单相关: 两个因素之间的相关关系叫单相关,即研究时只涉及一个自变量和一个因变量;

2、复相关 :三个或三个以上因素的相关关系叫复相关,即研究时涉及两个或两个以上的自变量和因变量相关;

3、偏相关:在某一现象与多种现象相关的场合,当假定其他变量不变时,其中两个变量之间的相关关系称为偏相关。

六、方差分析

使用条件:各样本须是相互独立的随机样本;各样本来自正态分布总体;各总体方差相等。

分类

1、单因素方差分析:一项试验只有一个影响因素,或者存在多个影响因素时,只分析一个因素与响应变量的关系

2、多因素有交互方差分析:一顼实验有多个影响因素,分析多个影响因素与响应变量的关系,同时考虑多个影响因素之间的关系

3、多因素无交互方差分析:分析多个影响因素与响应变量的关系,但是影响因素之间没有影响关系或忽略影响关系

4、协方差分祈:传统的方差分析存在明显的弊端,无法控制分析中存在的某些随机因素,使之影响了分祈结果的准确度。协方差分析主要是在排除了协变量的影响后再对修正后的主效应进行方差分析,是将线性回归与方差分析结合起来的一种分析方法,

七、回归分析

分类:

1、一元线性回归分析:只有一个自变量X与因变量Y有关,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布。

2、多元线性回归分析

使用条件:分析多个自变量与因变量Y的关系,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布 。

1)变呈筛选方式:选择最优回归方程的变里筛选法包括全横型法(CP法)、逐步回归法,向前引入法和向后剔除法

2)横型诊断方法:

A 残差检验: 观测值与估计值的差值要艰从正态分布

B 强影响点判断:寻找方式一般分为标准误差法、Mahalanobis距离法

C 共线性诊断:

• 诊断方式:容忍度、方差扩大因子法(又称膨胀系数VIF)、特征根判定法、条件指针CI、方差比例

• 处理方法:增加样本容量或选取另外的回归如主成分回归、岭回归等

3、Logistic回归分析

线性回归模型要求因变量是连续的正态分布变里,且自变量和因变量呈线性关系,而Logistic回归模型对因变量的分布没有要求,一般用于因变量是离散时的情况

分类:

Logistic回归模型有条件与非条件之分,条件Logistic回归模型和非条件Logistic回归模型的区别在于参数的估计是否用到了条件概率。

4、其他回归方法 非线性回归、有序回归、Probit回归、加权回归等

八、聚类分析

聚类与分类的不同在于,聚类所要求划分的类是未知的。

聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。

从统计学的观点看,聚类分析是通过数据建模简化数据的一种方法。传统的统计聚类分析方法包括系统聚类法、分解法、加入法、动态聚类法、有序样品聚类、有重叠聚类和模糊聚类等。采用k-均值、k-中心点等算法的聚类分析工具已被加入到许多着名的统计分析软件包中,如SPSS、SAS等。

从机器学习的角度讲,簇相当于隐藏模式。聚类是搜索簇的无监督学习过程。与分类不同,无监督学习不依赖预先定义的类或带类标记的训练实例,需要由聚类学习算法自动确定标记,而分类学习的实例或数据对象有类别标记。聚类是观察式学习,而不是示例式的学习。

聚类分析是一种探索性的分析,在分类的过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。聚类分析所使用方法的不同,常常会得到不同的结论。不同研究者对于同一组数据进行聚类分析,所得到的聚类数未必一致。

从实际应用的角度看,聚类分析是数据挖掘的主要任务之一。而且聚类能够作为一个独立的工具获得数据的分布状况,观察每一簇数据的特征,集中对特定的聚簇集合作进一步地分析。聚类分析还可以作为其他算法(如分类和定性归纳算法)的预处理步骤。

定义:

依据研究对象(样品或指标)的特征,对其进行分类的方法,减少研究对象的数目。

各类事物缺乏可靠的历史资料,无法确定共有多少类别,目的是将性质相近事物归入一类。

各指标之间具有一定的相关关系。

聚类分析(cluster
analysis)是一组将研究对象分为相对同质的群组(clusters)的统计分析技术。聚类分析区别于分类分析(classification
analysis) ,后者是有监督的学习。

变量类型:定类变量、定量(离散和连续)变量

样本个体或指标变量按其具有的特性进行分类,寻找合理的度量事物相似性的统计量。

1、性质分类:

Q型聚类分析:对样本进行分类处理,又称样本聚类分祈使用距离系数作为统计量衡量相似度,如欧式距离、极端距离、绝对距离等

R型聚类分析:对指标进行分类处理,又称指标聚类分析使用相似系数作为统计量衡量相似度,相关系数、列联系数等

2、方法分类:

1)系统聚类法:适用于小样本的样本聚类或指标聚类,一般用系统聚类法来聚类指标,又称分层聚类

2)逐步聚类法:适用于大样本的样本聚类

3)其他聚类法:两步聚类、K均值聚类等

九、判别分析

1、判别分析:根据已掌握的一批分类明确的样品建立判别函数,使产生错判的事例最少,进而对给定的一个新样品,判断它来自哪个总体

2、与聚类分析区别

1)聚类分析可以对样本逬行分类,也可以对指标进行分类;而判别分析只能对样本

2)聚类分析事先不知道事物的类别,也不知道分几类;而判别分析必须事先知道事物的类别,也知道分几类

3)聚类分析不需要分类的历史资料,而直接对样本进行分类;而判别分析需要分类历史资料去建立判别函数,然后才能对样本进行分类

3、进行分类 :

1)Fisher判别分析法 :

以距离为判别准则来分类,即样本与哪个类的距离最短就分到哪一类,适用于两类判别;

以概率为判别准则来分类,即样本属于哪一类的概率最大就分到哪一类,适用于

适用于多类判别。

2)BAYES判别分析法 :

BAYES判别分析法比FISHER判别分析法更加完善和先进,它不仅能解决多类判别分析,而且分析时考虑了数据的分布状态,所以一般较多使用;

十、主成分分析

介绍:主成分分析(Principal
Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。

在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。

主成分分析首先是由K.皮尔森(Karl Pearson)对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。

将彼此梠关的一组指标变适转化为彼此独立的一组新的指标变量,并用其中较少的几个新指标变量就能综合反应原多个指标变量中所包含的主要信息。

原理:在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。

设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法。

缺点: 1、在主成分分析中,我们首先应保证所提取的前几个主成分的累计贡献率达到一个较高的水平(即变量降维后的信息量须保持在一个较高水平上),其次对这些被提取的主成分必须都能够给出符合实际背景和意义的解释(否则主成分将空有信息量而无实际含义)。

2、主成分的解释其含义一般多少带有点模糊性,不像原始变量的含义那么清楚、确切,这是变量降维过程中不得不付出的代价。因此,提取的主成分个数m通常应明显小于原始变量个数p(除非p本身较小),否则维数降低的“利”可能抵不过主成分含义不如原始变量清楚的“弊”。

十一、因子分析

一种旨在寻找隐藏在多变量数据中、无法直接观察到却影响或支配可测变量的潜在因子、并估计潜在因子对可测变量的影响程度以及潜在因子之间的相关性的一种多元统计分析方法

与主成分分析比较:

相同:都能够起到治理多个原始变量内在结构关系的作用

不同:主成分分析重在综合原始变适的信息.而因子分析重在解释原始变量间的关系,是比主成分分析更深入的一种多元统计方法

用途:

1)减少分析变量个数

2)通过对变量间相关关系探测,将原始变量进行分类

十二、时间序列分析

动态数据处理的统计方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题;时间序列通常由4种要素组成:趋势、季节变动、循环波动和不规则波动。

主要方法:移动平均滤波与指数平滑法、ARIMA横型、量ARIMA横型、ARIMAX模型、向呈自回归横型、ARCH族模型

时间序列是指同一变量按事件发生的先后顺序排列起来的一组观察值或记录值。构成时间序列的要素有两个:其一是时间,其二是与时间相对应的变量水平。实际数据的时间序列能够展示研究对象在一定时期内的发展变化趋势与规律,因而可以从时间序列中找出变量变化的特征、趋势以及发展规律,从而对变量的未来变化进行有效地预测。

时间序列的变动形态一般分为四种:长期趋势变动,季节变动,循环变动,不规则变动。

时间序列预测法的应用:

系统描述:根据对系统进行观测得到的时间序列数据,用曲线拟合方法对系统进行客观的描述;

系统分析:当观测值取自两个以上变量时,可用一个时间序列中的变化去说明另一个时间序列中的变化,从而深入了解给定时间序列产生的机理;

预测未来:一般用ARMA模型拟合时间序列,预测该时间序列未来值;

决策和控制:根据时间序列模型可调整输入变量使系统发展过程保持在目标值上,即预测到过程要偏离目标时便可进行必要的控制。

特点:

假定事物的过去趋势会延伸到未来;

预测所依据的数据具有不规则性;

撇开了市场发展之间的因果关系。

①时间序列分析预测法是根据市场过去的变化趋势预测未来的发展,它的前提是假定事物的过去会同样延续到未来。事物的现实是历史发展的结果,而事物的未来又是现实的延伸,事物的过去和未来是有联系的。市场预测的时间序列分析法,正是根据客观事物发展的这种连续规律性,运用过去的历史数据,通过统计分析,进一步推测市场未来的发展趋势。市场预测中,事物的过去会同样延续到未来,其意思是说,市场未来不会发生突然跳跃式变化,而是渐进变化的。

时间序列分析预测法的哲学依据,是唯物辩证法中的基本观点,即认为一切事物都是发展变化的,事物的发展变化在时间上具有连续性,市场现象也是这样。市场现象过去和现在的发展变化规律和发展水平,会影响到市场现象未来的发展变化规律和规模水平;市场现象未来的变化规律和水平,是市场现象过去和现在变化规律和发展水平的结果。

需要指出,由于事物的发展不仅有连续性的特点,而且又是复杂多样的。因此,在应用时间序列分析法进行市场预测时应注意市场现象未来发展变化规律和发展水平,不一定与其历史和现在的发展变化规律完全一致。随着市场现象的发展,它还会出现一些新的特点。因此,在时间序列分析预测中,决不能机械地按市场现象过去和现在的规律向外延伸。必须要研究分析市场现象变化的新特点,新表现,并且将这些新特点和新表现充分考虑在预测值内。这样才能对市场现象做出既延续其历史变化规律,又符合其现实表现的可靠的预测结果。

②时间序列分析预测法突出了时间因素在预测中的作用,暂不考虑外界具体因素的影响。时间序列在时间序列分析预测法处于核心位置,没有时间序列,就没有这一方法的存在。虽然,预测对象的发展变化是受很多因素影响的。但是,运用时间序列分析进行量的预测,实际上将所有的影响因素归结到时间这一因素上,只承认所有影响因素的综合作用,并在未来对预测对象仍然起作用,并未去分析探讨预测对象和影响因素之间的因果关系。因此,为了求得能反映市场未来发展变化的精确预测值,在运用时间序列分析法进行预测时,必须将量的分析方法和质的分析方法结合起来,从质的方面充分研究各种因素与市场的关系,在充分分析研究影响市场变化的各种因素的基础上确定预测值。

需要指出的是,时间序列预测法因突出时间序列暂不考虑外界因素影响,因而存在着预测误差的缺陷,当遇到外界发生较大变化,往往会有较大偏差,时间序列预测法对于中短期预测的效果要比长期预测的效果好。因为客观事物,尤其是经济现象,在一个较长时间内发生外界因素变化的可能性加大,它们对市场经济现象必定要产生重大影响。如果出现这种情况,进行预测时,只考虑时间因素不考虑外界因素对预测对象的影响,其预测结果就会与实际状况严重不符。

C. 统计研究的基本方法有哪几种

抽样平均误差是测定抽样误差的基本指标。它是随机抽样可变总体平均数(抽样平均数的所有可能值)与全及平均数之间离差...这个指标反映抽样平均数的所有可能值对全及平均数的平均离散程度,即反映误差平均值的大小
分布数列是统计整理的一种重要形式,是统计描述和统计分析的一种重要方法,它可以说明总体的分布特征、内部结构,并可据以研究总体某一标志值的平均水平及其变动的规律性。
1、统计学:是运用数理统计的基本原理和方法研究预防医学和卫生事业管理中资料的收集,整理和分析的一门应用科学。具体地讲,是按照设计方案去收集、整理、分析数据,并对数据结果进行解释,从而做出比较正确的结论。
2、总体:是根据研究目的确定同质的所有观察单位某种变量的集合。
3、变异:同一性质的事物,其观察值(变量值)之间的差异。
4、抽样研究:从所研究的总体中随机抽取一部分有代表性的样本进行研究,用样本指标推论总体,最终达到了解总体的目的。这种用样本指标推论总体参数的方法称为抽样研究。
5、统计描述:用统计图表或计算统计指标的方法表达一个特定群体的某种现象或特征。
6、统计推断:根据样本资料的特性对总体的特性作估计或推论的方法称统计推断,常用方法是参数估计和假设检验。
7、概率:是指某事件出现可能性大小的度量,以符号P表示。
8、医学参考值范围:参考值范围又称正常值范围。医学上常把包括绝大多数人某项指标的数值范围称为该指标的参考值范围。
9、正态分布规律:实际工作中,经常需要了解正态曲线下横轴上的一定区域的面积占总面积的百分数,用以估计该区间的观察例数占总例数的百分数,或变量值落在该区间的频数或概率。
10、可比性:是指对研究结果有影响的非处理因素在各处理组之间尽可能相
同或相近。
11、动态数列:是一系列按时间顺序排列起来的统计指标,包括绝对数、相对数或平均数,用以说明事物在时间上的变化和发展趋势。
12、抽样误差:在同一总体中随机抽取样本含量相同的若干样本时,样本指标之间的差异以及样本指标与总体指标的差异。
13、标准误:表示样本均数间变异程度。
14、率的抽样误差:抽样过程中产生的同一总体中均数之间的差异称为均数的抽样误差,率之间的差异称为率的抽样误差。
15、参数估计:是指用样本指标(称为统计量)估计总体指标(称为参数)。
16、可信区间:总体参数的所在范围通常称为参数的可信区间或置信区间,即该区间以一定的概率(如95%或99%)包含总体参数。
17、I型错误:拒绝了实际撒谎能够成立的H0,这类“弃真”的错误称为I型错误。
18、II型错误:接受了实际撒谎能够不成立的H0,这类“存伪”的错误称为II型错误。
19、检验效能:1-b称为检验效能又称为把握度。它的含义是:当两总体确实有差别时,按规定的检验水准a,能够发现两总体间差别的能力。
20、四格表资料:两个样本率的资料又称为四格表资料,在四格表资料中两个样本的实际发生频数和实际未发生频数为基本数据,其他数据均可由这四个基本数据推算出来。
21、列联表资料:对同一样本资料按其两个无序分类变量(行变量和列变量)归纳成双向交叉排列的统计表,其行变量可分为R类,列变量可分为C类,这种表称为R*C列联表。
22、参数检验:是一种要求样本来自总体分布型是已知的(如正态分布),在这种假设的基础上,对总体参数(如总体均数)进行统计推断的假设检验。
23、非参数检验:是一种不依赖总体分布类型,也不对总体参数(如总体均数)进行统计推断的假设检验。
24、秩次:即通常意义上的序号,实际上就是将观察值按顺序由小到大排列,并用序号代替了变量值本身。
25、直线相关系数:它是说明具有直线关系的两个变量间,相关关系的密切程度与相关方向的统计指标。相关系数没有单位,取值范围是-1〈=r〈=1,r的绝对值越大表明两变量的关系越密切。
26、完全负相关:这是一种极为特殊的负相关关系,从散点图上可以看出,由x与y构成的散点完全分布在一条直线上,x增加,y相应减少,算得的相关系数r=-1。
27、正相关:它是说明具有直线关系的两个变量间,存在有正的相关方向,即当x增加时,y有相应增大的趋势,所算得的相关系数r为正值。
28、等级相关:是对等级数据作相关分析,它又称为秩相关,是一种非参数统计方法。
29、评价:是通过对某些标准来判断观测结果,并赋予这种结果以一定的意义和价值的过程。
30、综合评价:是指人们根据不同的评价目的,选择相应的评价形式,据此选择多个因素或指标,并通过一定的数学模型,将多个评价因素或指标转化为能反映评价对象总体特征的信息。
31、优序法:为了比较某几个事物或方案的优劣,在选定各项评价指标后,将待评价的对象或方案就各项评价指标的测量值大小分别排列,并分别对各序号(等级)以相应的评分值即优序数,然后综合诸评价指标,分别计算评价对象的总赋优序数,并按总赋优序大小评定其优顺序的方法即优序法。
32、Topsis:Topsis法常用于系统工程中有限方案多目标决策分析,此外,也可用于效益评价、卫生决策和卫生事业管理等多领域。
33、根本死因:WHO规定,根本死因是指:“(a)引起直接导致死亡的一系列病态事件的那些疾病或损伤,或者(b)造成致命损伤的事故或暴力的情况。”
34、卫生服务需要:是指人们因疾病影响健康,引起人体正常活动的障碍,实际应当接受各种卫生服务的需要(如预防保健、治疗、康复)。
35、卫生服务调查统计:是卫生统计的主要内容之一,卫生服务调查统计是从卫生服务资料的设计、收集、整理、分析的角度,来阐述卫生服务研究的特点、研究方法和注意事项,以便使卫生服务研究服务更具有科学性。
36、卫生服务调查:是指对卫生服务状况、人群健康的危险因素、人群卫生服务的需求和利用、卫生服务资源的分配和利用所进行的一种社会调查。
37、统计表:是以表格的形式列出统计指标,它是对资料进行统计描述时的一种常用手段。
38、统计图:是以各种几何图形(如点、线、面或立体)显示数据的大小、升降、分布以及关系等,它也是对资料进行统计描述时的一种常用手段。
39、均数的抽样误差:统计学上,对于抽样过程中产生的同一总体中均数之间的差异称为均数的抽样误差。

D. 请问下四种应用统计学分析方法区别…

统计学是应用数学的一个分支,主要通过利用概率论建立数学模型,收集所观察系统的数据,进行量化的分析、总结,并进而进行推断和预测,为相关决策提供依据和参考。它被广泛的应用在各门学科之上,从物理和社会科学到人文科学,甚至被用来工商业及政府的情报决策之上。统计学主要又分为描述统计学和推断统计学。给定一组数据,统计学可以摘要并且描述这份数据,这个用法称作为描述统计学。另外,观察者以数据的形态建立出一个用以解释其随机性和不确定性的数学模型,以之来推论研究中的步骤及母体,这种用法被称做推论统计学。这两种用法都可以被称作为应用统计学。另外也有一个叫做数理统计学的学科专门用来讨论这门科目背后的理论基础。统计学的英文statistics最早是源于现代拉丁文statisticumcollegium(国会)以及意大利文statista(国民或政治家)。德文Statistik,最早是由GottfriedAchenwall(1749)所使用,代表对国家的资料进行分析的学问,也就是“研究国家的科学”。在十九世纪统计学在广泛的数据以及资料中探究其意义,并且由JohnSinclair引进到英语世界。统计学是一门很古老的科学,一般认为其学理研究始于古希腊的亚里斯多德时代,迄今已有两千三百多年的历史。它起源于研究社会经济问题,在两千多年的发展过程中,统计学至少经历了“城邦政情”,“政治算数”和“统计分析科学”三个发展阶段。所谓“数理统计”并非独立于统计学的新学科,确切地说它是统计学在第三个发展阶段所形成的所有收集和分析数据的新方法的一个综合性名词。概率论是数理统计方法的理论基础,但是它不属于统计学的范畴,而属于数学的范畴。统计学的发展过程的三个阶段第一阶段称之为“城邦政情”(Mattersofstate)阶段“城邦政情”阶段始于古希腊的亚里斯多德撰写“城邦政情”或“城邦纪要”。他一共撰写了一百五十馀种纪要,其内容包括各城邦的历史,行政,科学,艺术,人口,资源和财富等社会和经济情况的比较,分析,具有社会科学特点。“城邦政情”式的统计研究延续了一两千年,直至十七世纪中叶才逐渐被“政治算数”这个名词所替代,并且很快被演化为“统计学”(Statistics)。统计学依然保留了城邦(state)这个词根。第二阶段称之为“政治算数”(Politcalarthmetic)阶段与“城邦政情”阶段没有很明显的分界点,本质的差别也不大。“政治算数”的特点是统计方法与数学计算和推理方法开始结合。分析社会经济问题的方式更加注重运用定量分析方法。1690年英国威廉·配弟出版(政治算数)一书作为这个阶段的起始标志.威廉·配弟用数字,重量和尺度将社会经济现象数量化的方法是近代统计学的重要特征。因此,威廉?配弟的(政治算数)被后来的学者评价为近代统计学的来源,威廉?配弟本人也被评价为近代统计学之父。配弟在书中使用的数字有三类:第一类是对社会经济现象进行统计调查和经验观察得到的数字.因为受历史条件的限制,书中通过严格的统计调查得到的数据少,根据经验得出的数字多;第二类是运用某种数学方法推算出来的数字。其推算方法可分为三种:“(1)以已知数或已知量为基础,循着某种具体关系进行推算的方法;(2)通过运用数字的理论性推理来进行推算的方法;(3)以平均数为基础进行推算的方法”;第三类是为了进行理论性推理而采用的例示性的数字.配弟把这种运用数字和符号进行的推理称之为“代数的算法”。从配弟使用数据的方法看,“政治算数”阶段的统计学已经比较明显地体现了“收集和分析数据的科学和艺术”特点,统计实证方法和理论分析方法浑然一体,这种方法即使是现代统计学也依然继承。第三阶段称之为“统计分析科学”(Scienceofstatisticalanalysis)阶段在“政治算数”阶段出现的统计与数学的结合趋势逐渐发展形成了“统计分析科学”。十九世纪末,欧洲大学开设的“国情纪要”或“政治算数”等课程名称逐渐消失,代之而起的是“统计分析科学”课程.当时的“统计分析科学”课程的内容仍然是分析研究社会经济问题。“统计分析科学”课程的出现是现代统计发展阶段的开端.1908年,“学生”氏(WilliamSleeyGosset的笔名Student)发表了关于t分布的论文,这是一篇在统计学发展史上划时代的文章。它创立了小样本代替大样本的方法,开创了统计学的新纪元。现代统计学的代表人物首推比利时统计学家奎特莱(AdolpheQuelet),他将统计分析科学广泛应用于社会科学,自然科学和工程技术科学领域,因为他深信统计学是可以用于研究任何科学的一般研究方法.现代统计学的理论基础概率论始于研究赌博的机遇问题,大约开始于1477年。数学家为了解释支配机遇的一般法则进行了长期的研究,逐渐形成了概率论理论框架。在概率论进一步发展的基础上,到十九世纪初,数学家们逐渐建立了观察误差理论,正态分布理论和最小平方法则。于是,现代统计方法便有了比较坚实的理论基础。在科学技术飞速发展的今天,统计学广泛吸收和融合相关学科的新理论,不断开发应用新技术和新方法,深化和丰富了统计学传统领域的理论与方法,并拓展了新的领域。今天的统计学已展现出强有力的生命力。在我国,社会主义市场经济体制的逐步建立,实践发展的需要对统计学提出了新的、更高的要求。随着我国社会主义市场经济的成长和不断完善,统计学的潜在功能将得到更充分更完满的开掘。第一,对系统性及系统复杂性的认识为统计学的未来发展增加了新的思路。由于社会实践广度和深度迅速发展,以及科学技术的高度发展,人们对客观世界的系统性及系统的复杂性认识也更加全面和深入。随着科学融合趋势的兴起,统计学的研究触角已经向新的领域延伸,新兴起了探索性数据的统计方法的研究。研究的领域向复杂客观现象扩展。21世纪统计学研究的重点将由确定性现象和随机现象转移到对复杂现象的研究。如模糊现象、突变现象及混沌现象等新的领域。可以这样说,复杂现象的研究给统计开辟了新的研究领域。第二,定性与定量相结合的综合集成法将为统计分析方法的发展提供新的思想。定性与定量相结合的综合集成方法是钱学森教授于1990年提出的。这一方法的实质就是将科学理论、经验知识和专家判断相结合,提出经验性的假设,再用经验数据和资料以及模型对它的确实性进行检测,经过定量计算及反复对比,最后形成结论。它是研究复杂系统的有效手段,而且在问题的研究过程中处处渗透着统计思想,为统计分析方法的发展提供了新的思维方式。第三,统计科学与其他科学渗透将为统计学的应用开辟新的领域。现代科学发展已经出现了整体化趋势,各门学科不断融合,已经形成一个相互联系的统一整体。由于事物之间具有的相互联系性,各学科之间研究方法的渗透和转移已成为现代科学发展的一大趋势。许多学科取得的新的进展为其他学科发展提供了全新的发展机遇。模糊论、突变论及其他新的边缘学科的出现为统计学的进一步发展提供了新的科学方法和思想。将一些尖端科学成果引入统计学,使统计学与其交互发展将成为未来统计学发展的趋势。统计学也将会有一个令人振奋的前景。今天已经有一些先驱者开始将控制论、信息论、系统论以及图论、混沌理论、模糊理论等方法和理论引入统计学,这些新的理论和方法的渗透必将会给统计学的发展产生深远的影响。统计学产生于应用,在应用过程中发展壮大。随着经济社会的发展、各学科相互融合趋势的发展和计算机技术的迅速发展,统计学的应用领域、统计理论与分析方法也将不断发展,在所有领域展现它的生命力和重要作用。

阅读全文

与统计的研究方法的区别相关的资料

热点内容
野生灵芝如何保存方法 浏览:502
小烫伤怎么办处理方法 浏览:64
吃完饭后犯困有什么方法可以提神 浏览:828
野马造车难题解决方法 浏览:55
金融学的研究生方法 浏览:807
用仪器检测的方法 浏览:227
论述方法怎么写 浏览:710
开发时间评估方法有哪些 浏览:896
水文分析中计算累积汇水量方法 浏览:31
仓颉造字研究方法 浏览:725
治疗类风湿性关节炎的方法 浏览:448
漏电检测仪使用方法 浏览:376
什么方法可以治前列腺增生 浏览:301
怎么学好心理学的方法 浏览:421
睡眠唤不醒的解决方法 浏览:795
教学口语训练方法 浏览:663
打开苹果手机id的方法 浏览:232
八角椅使用方法 浏览:869
咽喉炎最佳的治疗方法 浏览:658
管理实践中常用的不确型决策方法 浏览:486