导航:首页 > 研究方法 > 数据的特征和差异性研究方法

数据的特征和差异性研究方法

发布时间:2024-03-25 16:00:25

‘壹’ 怎么用spss分析三组数据的差异是否显着

、首先我们对上表数据进行细化,找到每组内受访者的具体满意度打分数值,而不是这个汇总后的得分值。

2、SPSS方差分析:

image

分析:比较均值,单因素方差分析

因变量列表:品类满意度

因子:收入

选项:方差同质性检验

3、数据是否适合做方差分析

image

方差分析之前,需要进行可行性检验,原假设,各分组方差无差异。根据同质性检验可知,sig值0.453,为大概率,原假设成立,即不同分组之间同质,没有显着差异,可进行方差分析。

4、方差分析结果

image

原假设,各分组之间无差异。方差分析sig值0.194,大于小概率值0.05,为大概率,原假设成立,即不同收入水平分组之间在品类满意度上并不没有不同。不存在显着差异。

5、用可视化图来揭示原因

image

我们可以看到,每类收入者的满意度得分都围绕平均值上下波动,这表明不同收入者对品类的态度存在明显差异,例如,同是高收入者,有的非常满意,有的却十分的不满意。同组内的差异甚至高出不同收入者之间的差异,这一点可以通过方差分析中方差得以判断。

因此说,收入水平并不是导致用户对A卖场品类满意度的关键因素。

可见,数据的表象往往迷惑人,尤其是综合汇总后的平均值,通过对底层数据进行分组及方差分析则可以让我们拨开云雾,看到数据的本质。

同时,这个案例也告诉我们,在常规的报表分析当中,经常性的工作是对底层数据进行汇总分析,然后拿汇总数据用于决策,此时,非常容易就数字大小的对比而做出判断,报表工作人员需要注意,需要养成用统计的理念和逻辑上报数据的结果。

打开CSDN,阅读体验更佳

Stata:多个变量组间均值\中位数差异检验
  作者:韩少真(西北大学) || 刘婉青(西北大学) Stata 连享会: 知乎 | 简书 | 码云 | CSDN   2019暑期Stata现场班,7.17-26日,北京,连玉君+刘瑞明 主讲   Stata连享会 精品专题 || 精彩推文 文章目录1. 问题背景1.1 期刊论文示例一1.2 期刊论文示例二1.3 期刊论文示例三2. Stata实现组间均值或中位数差异检验的常见...
浏览器打开

均值已知检验方差_SPSS篇—方差分析

昨天跟大家分享了如何用SPSS进行回归分析,知道了回归分析的用途以及使用的场景。今天跟大家分享的就是之前文章里面出现很多次的一个分析—方差分析。方差分析又被称作“F检验”或者“变异数分析”,主要是用于两个及两个以上样本均值差异的显着性检验。方差分析和回归分析一样,也有很多个分支。对于方差分析,一般我们是用来研究不同来源的变异对总变异的贡献大小,从而确定可控因素对因变量的影响大小。我们今天通过一个例...
浏览器打开
相关推荐
双因素方差分析_科研常用显着性分析方法汇总及选择(T检验,Mann-Whitney U test检验,方差分析等)...
科研常见的差异性分析方法汇总根据数据是否符合正态分布,分为:参数检验非参数检验非参数检验是在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态等进行推断的方法。由于非参数检验方法在推断过程中不涉及有关总体分布的参数,因而得名为“非参数”检验。 参数检验(parameter test)全称参数假设检验,是指对参数平均值、方差进行的统计检验。先由测得的样本数据计算检验统计量,若计算的统计量值落...
浏览器打开
如何判断组之间是否有显着性差异?
怎么知道组之间是否有显着性差异? 方法:单因素方差分析;双尾检验;K-S检验;x²检验;蒙特卡罗检验 1 K-S检验法介绍: 有人首先想到单因素方差分析或双尾检验(2 tailed TEST)。其实这些是不准确的,最好采用Kolmogorov-Smirnov test(柯尔莫诺夫-斯米尔诺夫检验)来分析变量是否符合某种分布或比较两组之间有无显着性差异。(https://www.cnblog...
浏览器打开
均值已知检验方差_方差分析与R
1.什么是方差分析?假设有多个总体(三个及以上),都是服从正态分布且方差相同。方差分析就是检验多个总体均值是否相等的统计方法。比如用三种鸡饲料喂小鸡,三个月后小鸡的重量是随机的,假设服从正态分布。我们自然就问,这三种鸡饲料喂的小鸡三个月以后重量的均值是否相同?从这个例子中我们可以看出,在假设其它条件相同的情况下,造成小鸡三个月后平均重量不同的因素就是鸡饲料。若三种鸡饲料对小鸡重量的影响效果相同,那...
浏览器打开
均值已知检验方差_方差分析不显着就一定无差异吗?
方差分析的零假设是:各组均值相等。这个“各组均值相等”如何理解?正确理解是:各组和所有组总均值相等,并不是真的“各组均值相等”。方差分析认为:各组和总均值无差异,那么各组均值等于总均值,意味着各组均值相等。单因素方差分析大家应该都理解的比较好,我们可以看看单因素方差分析F检验统计量的分子核心部分:(各组均值-总均值)的平方。看到没,减的是“总均值”。一般来说,如果各组和总均值无差异,

‘贰’ 数据分析方法

常见的分析方法有:分类分析,矩阵分析,漏斗分析,相关分析,逻辑树分析,趋势分析,行为轨迹分析,等等。 我用HR的工作来举例,说明上面这些分析要怎么做,才能得出洞见。

01) 分类分析
比如分成不同部门、不同岗位层级、不同年龄段,来分析人才流失率。比如发现某个部门流失率特别高,那么就可以去分析。

02) 矩阵分析
比如公司有价值观和能力的考核,那么可以把考核结果做出矩阵图,能力强价值匹配的员工、能力强价值不匹配的员工、能力弱价值匹配的员工、能力弱价值不匹配的员工各占多少比例,从而发现公司的人才健康度。

03) 漏斗分析
比如记录招聘数据,投递简历、通过初筛、通过一面、通过二面、通过终面、接下Offer、成功入职、通过试用期,这就是一个完整的招聘漏斗,从数据中,可以看到哪个环节还可以优化。

04) 相关分析
比如公司各个分店的人才流失率差异较大,那么可以把各个分店的员工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、员工年龄、管理人员年龄等)要素进行相关性分析,找到最能够挽留员工的关键因素。

05) 逻辑树分析
比如近期发现员工的满意度有所降低,那么就进行拆解,满意度跟薪酬、福利、职业发展、工作氛围有关,然后薪酬分为基本薪资和奖金,这样层层拆解,找出满意度各个影响因素里面的变化因素,从而得出洞见。

06) 趋势分析
比如人才流失率过去12个月的变化趋势。

07)行为轨迹分析
比如跟踪一个销售人员的行为轨迹,从入职、到开始产生业绩、到业绩快速增长、到疲惫期、到逐渐稳定。

‘叁’ 5种常用的统计学方法是什么

1、大量观察法

(3)数据的特征和差异性研究方法扩展阅读

(一)大量观察法

这是统计活动过程中搜集数据资料阶段(即统计调查阶段)的基本方法:即要对所研究现象总体中的足够多数的个体进行观察和研究,以期认识具有规律性的总体数量特征。大量观察法的数理依据是大数定律,大数定律是指虽然每个个体受偶然因素的影响作用不同而在数量上几存有差异。

但对总体而言可以相互抵消而呈现出稳定的规律性,因此只有对足够多数的个体进行观察,观察值的综合结果才会趋向稳定,建立在大量观察法基础上的数据资料才会给出一般的结论。统计学的各种调查方法都属于大量观察法。

(二)、统计分组法

由于所研究现象本身的复杂性、差异性及多层次性,需要我们对所研究现象进行分组或分类研究,以期在同质的基础上探求不同组或类之间的差异性。统计分组在整个统计活动过程中都占有重要地位,在统计调查阶段可通过统计分组法来搜集不同类的资料,并可使抽样调查的样本代表性得以提高(即分层抽样方式);

在统计整理阶段可以通过统计分组法使各种数据资料得到分门别类的加工处理和储存,并为编制分布数列提供基础;在统计分析阶段则可以通过统计分组法来划分现象类型、研究总体内在结构、比较不同类或组之间的差异(显着性检验)和分析不同变量之间的相关关系。统计学中的统计分组法有传统分组法、判别分析法和聚类分析法等。

(三)、综合指标法

统计研究现象的数量方面的特征是通过统计综合指标来反映的。所谓综合指标,是指用来从总体上反映所研究现象数量特征和数量关系的范畴及其数值,常见的有总量指标、相对指标,平均指标和标志变异指标等。

综合指标法在统计学、尤其是社会经济统计学中占有十分重要的地位,是描述统计学的核心内容。如何最真实客观地记录、描述和反映所研究现象的数量特征和数量关系,是统计指标理论研究的一大课题。

阅读全文

与数据的特征和差异性研究方法相关的资料

热点内容
金陵肺癌免疫治疗方法 浏览:983
各个季节的白菜种植方法 浏览:889
宝宝高烧如何降温方法 浏览:325
解决无赖老板可用的方法 浏览:169
怎么在控制台执行main方法 浏览:756
房贷利率计算方法中lpr是什么意思 浏览:360
提取鸡血清最简单的方法 浏览:212
犬瘟热的快速的诊断方法 浏览:192
怎么用化学方法鉴别丁酮 浏览:731
大米白酒的手工方法步骤 浏览:487
垂直度公差测量方法步骤 浏览:285
机器人学习简单方法 浏览:586
同步到苹果手机的音乐在哪里设置方法 浏览:805
做饺子皮的简单方法不用鸡蛋 浏览:459
摩托电喷常见故障检测方法 浏览:650
热敷贴使用方法图解 浏览:436
冷冻肉的正确解冻方法 浏览:333
割伤紧急处理方法用英语怎么说 浏览:432
手机清理垃圾方法的小视频 浏览:107
蝎子培育方法有哪些 浏览:717