Ⅰ 相关性分析有哪几种方法
在做数据分析时,为了提炼观点,相关性分析是必不可少,而且尤为重要的一个环节。但是,对于不同类型的数据,相关性分析的方法都各不相同。本文,主要按照不同的数据类型,来对各种相关性分析方法进行梳理总结。
相关性分析是指对两个或多个具备相关性的变量元素进行分析,相关性不等于因果性。
一、离散与离散变量之间的相关性
1、卡方检验
卡方检验是一种用途很广的计数资料的假设检验方法。它属于非参数检验的范畴,主要是比较两个及两个以上样本率( 构成比)以及两个分类变量的关联性分析。其根本思想就是在于比较理论频数和实际频数的吻合程度或拟合优度问题。
它在分类资料统计推断中的应用,包括:两个率或两个构成比比较的卡方检验;多个率或多个构成比比较的卡方检验以及分类资料的相关分析等。
(1)假设,多个变量之间不相关
(2)根据假设计算得出每种情况的理论值,根据理论值与实际值的差别,计算得到卡方值 及 自由度
df=(C-1)(R-1)
(3)查卡方表,求p值
卡方值越大,P值越小,变量相关的可能性越大,当P<=0.05,否定原假设,认为变量相关。
2、信息增益 和 信息增益率
在介绍信息增益之前,先来介绍两个基础概念,信息熵和条件熵。
信息熵,就是一个随机变量的不确定性程度。
条件熵,就是在一个条件下,随机变量的不确定性。
(1)信息增益:熵 - 条件熵
在一个条件下,信息不确定性减少的程度。
Gain(Y,X)=H(Y)-H(Y|X)
信息增益越大,表示引入条件X之后,不纯度减少得越多。信息增益越大,则两个变量之间的相关性越大。
(2)信息增益率
假设,某个变量存在大量的不同值,例如ID,引入ID后,每个子节点的不纯度都为0,则信息增益减少程度达到最大。所以,当不同变量的取值数量差别很大时,引入取值多的变量,信息增益更大。因此,使用信息增益率,考虑到分支个数的影响。
Gain_ratio=(H(Y)-H(Y|X))/H(Y|X)
二、连续与连续变量之间的相关性
1、协方差
协方差,表达了两个随机变量的协同变化关系。如果两个变量不相关,则协方差为0。
Cov(X,Y)=E{[X-E(X)],[Y-E(Y)]}
当 cov(X, Y)>0时,表明 X与Y 正相关;
当 cov(X, Y)<0时,表明X与Y负相关;
当 cov(X, Y)=0时,表明X与Y不相关。
协方差只能对两组数据进行相关性分析,当有两组以上数据时就需要使用协方差矩阵。
协方差通过数字衡量变量间的相关性,正值表示正相关,负值表示负相关。但无法对相关的密切程度进行度量。当我们面对多个变量时,无法通过协方差来说明那两组数据的相关性最高。要衡量和对比相关性的密切程度,就需要使用下一个方法:相关系数。
2、线性相关系数
也叫Pearson相关系数, 主要衡量两个变量线性相关的程度。
r=cov(X,Y)/(D(X)D(Y))
相关系数是用协方差除以两个随机变量的标准差。相关系数的大小在-1和1之间变化。再也不会出现因为计量单位变化,而数值暴涨的情况了。
线性相关系数必须建立在因变量与自变量是线性的关系基础上,否则线性相关系数是无意义的。
三、连续与离散变量之间的相关性
1、连续变量离散化
将连续变量离散化,然后,使用离散与离散变量相关性分析的方法来分析相关性。
2、箱形图
使用画箱形图的方法,看离散变量取不同值,连续变量的均值与方差及取值分布情况。
如果,离散变量取不同值,对应的连续变量的箱形图差别不大,则说明,离散变量取不同值对连续变量的影响不大,相关性不高;反之,相关性高。
Ⅱ 如何进行关联度分析
关联度分析法是一种多因素统计分析方法,它是以各因素的样本数据为依据用灰色关联度来描述因素间关系的强弱、大小和次序。
(1)确定反映系统行为特征的参考数列和影响系统行为的比较数列
反映系统行为特征的数据序列,称为参考数列。影响系统行为的因素组成的数据序列,称比较数列。
(2)对参考数列和比较数列进行无量纲化处理
由于系统中各因素的物理意义不同,导致数据的量纲也不一定相同,不便于比较,或在比较时难以得到正确的结论。因此在进行灰色关联度分析时,一般都要进行无量纲化的数据处理。
(3)求参考数列与比较数列的灰色关联系数ξ(Xi)
4)求关联度
因为关联系数是比较数列与参考数列在各个时刻(即曲线中的各点)的关联程度值,所以它的数不止一个,而信息过于分散不便于进行整体性比较。因此有必要将各个时刻(即曲线中的各点)的关联系数集中为一个值,即求其平均值,作为比较数列与参考数列间关联程度的数量表示。
(5)关联度排序
因素间的关联程度,主要是用关联度的大小次序描述,而不仅是关联度的大小。
Ⅲ 相关性用什么检验方法
一.线性相关分析:研究两个变量间线性关系的程度
用相关系数r来描述,关于r的解读:
(1)正相关:如果x,y变化的方向一致,如身高与体重的关系,r>0;一般地,
·|r|>0.95 存在显着性相关;
·|r|≥0.8 高度相关;
·0.5≤|r|<0.8 中度相关;
·0.3≤|r|<0.5 低度相关;
·|r|<0.3 关系极弱,认为不相关
(2)负相关:如果x,y变化的方向相反,如吸烟与肺功能的关系,r<0;
(3)无线性相关:r=0。
如果变量Y与X间是函数关系,则r=1或r=-1;如果变量Y与X间是统计关系,则-1<r<1。
(4)r的计算有三种:
①Pearson相关系数:对定距连续变量的数据进行计算。
②Spearman和Kendall相关系数:对分类变量的数据或变量值的分布明显非正态或分布不明时,计算时先对离散数据进行排序或对定距变量值排(求)秩。
实际上,对任何类型的变量,都可以使用相应的指标进行相关分析。也就是,有各种参数,对适合它们的变量进行分析。