1、分解主题分析
所谓分解主题分析,是指对于不同分析要求,我们可以初步分为营销主题、财务主题、灵活主题等,然后将这些大的主题逐步拆解为不同小的方面来进行分析。
2、钻取分析
所谓钻取分析,是指改变维的层次,变换分析的粒度。按照方向方式分为:向上和向下钻取。向上钻取是在某一维上将低层次的细节数据概括到高层次的汇总数据,或者减少维数;是自动生成汇总行的分析方法。向下钻取是从汇总数据深入到细节数据进行观察或增加新维的分析方法。
3、常规比较分析
所谓常规比较分析,是指一般比较常见的对比分析方法,例如有时间趋势分析、构成分析、同类比较分析、多指标分析、相关性分析、分组分析、象限分析等。
4、大型管理模型分析
所谓大型管理模型分析,是指依据各种成熟的、经过实践论证的大型管理模型对问题进行分析的方法。比较常见的大型管理模型分析包括RCV模型、阿米巴经营、品类管理分析等。
5、财务和因子分析
所谓财务和因子分析,主要是指因子分析法在财务信息分析上的广泛应用。因子分析的概念起源于20世纪初的关于智力测试的统计分析,以最少的信息丢失为前提,将众多的原有变量综合成较少的几个综合指标,既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失,达到有效的降维。比较常用的财务和因子分析法有杜邦分析法、EVA分析、财务指标、财务比率、坪效公式、品类公式、流量公式等。
6、专题大数据分析
所谓专题大数据分析,是指对特定的一些规模巨大的数据进行分析。大数据常用来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。常见特征是数据量大、类型繁多、价值密度低、速度快、时效低。比较常见的专题大数据分析有:市场购物篮分析、重力模型、推荐算法、价格敏感度分析、客户分组分析等分析方法。
‘贰’ 16种常用的数据分析方法汇总
一、描述统计
描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。
1、缺失值填充:常用方法:剔除法、均值法、最小邻居法、比率回归法、决策树法。
2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W检验、动差法。
二、假设检验
1、参数检验
参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验 。
1)U验 使用条件:当样本含量n较大时,样本值符合正态分布
2)T检验 使用条件:当样本含量n较小时,样本值符合正态分布
A 单样本t检验:推断该样本来自的总体均数μ与已知的某一总体均数μ0 (常为理论值或标准值)有无差别;
B 配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似;
C 两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。
2、非参数检验
非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。
适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。
A 虽然是连续数据,但总体分布形态未知或者非正态;
B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下;
主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。
三、信度分析
检査测量的可信度,例如调查问卷的真实性。
分类:
1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度
2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。
四、列联表分析
用于分析离散变量或定型变量之间是否存在相关。
对于二维表,可进行卡方检验,对于三维表,可作Mentel-Hanszel分层分析。
列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。
五、相关分析
研究现象之间是否存在某种依存关系,对具体有依存关系的现象探讨相关方向及相关程度。
1、单相关: 两个因素之间的相关关系叫单相关,即研究时只涉及一个自变量和一个因变量;
2、复相关 :三个或三个以上因素的相关关系叫复相关,即研究时涉及两个或两个以上的自变量和因变量相关;
3、偏相关:在某一现象与多种现象相关的场合,当假定其他变量不变时,其中两个变量之间的相关关系称为偏相关。
六、方差分析
使用条件:各样本须是相互独立的随机样本;各样本来自正态分布总体;各总体方差相等。
分类
1、单因素方差分析:一项试验只有一个影响因素,或者存在多个影响因素时,只分析一个因素与响应变量的关系
2、多因素有交互方差分析:一顼实验有多个影响因素,分析多个影响因素与响应变量的关系,同时考虑多个影响因素之间的关系
3、多因素无交互方差分析:分析多个影响因素与响应变量的关系,但是影响因素之间没有影响关系或忽略影响关系
4、协方差分祈:传统的方差分析存在明显的弊端,无法控制分析中存在的某些随机因素,使之影响了分祈结果的准确度。协方差分析主要是在排除了协变量的影响后再对修正后的主效应进行方差分析,是将线性回归与方差分析结合起来的一种分析方法,
七、回归分析
分类:
1、一元线性回归分析:只有一个自变量X与因变量Y有关,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布。
2、多元线性回归分析
使用条件:分析多个自变量与因变量Y的关系,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布 。
1)变呈筛选方式:选择最优回归方程的变里筛选法包括全横型法(CP法)、逐步回归法,向前引入法和向后剔除法
2)横型诊断方法:
A 残差检验: 观测值与估计值的差值要艰从正态分布
B 强影响点判断:寻找方式一般分为标准误差法、Mahalanobis距离法
C 共线性诊断:
诊断方式:容忍度、方差扩大因子法(又称膨胀系数VIF)、特征根判定法、条件指针CI、方差比例
处理方法:增加样本容量或选取另外的回归如主成分回归、岭回归等
3、Logistic回归分析
线性回归模型要求因变量是连续的正态分布变里,且自变量和因变量呈线性关系,而Logistic回归模型对因变量的分布没有要求,一般用于因变量是离散时的情况
分类:
Logistic回归模型有条件与非条件之分,条件Logistic回归模型和非条件Logistic回归模型的区别在于参数的估计是否用到了条件概率。
4、其他回归方法 非线性回归、有序回归、Probit回归、加权回归等
八、聚类分析
样本个体或指标变量按其具有的特性进行分类,寻找合理的度量事物相似性的统计量。
1、性质分类:
Q型聚类分析:对样本进行分类处理,又称样本聚类分祈 使用距离系数作为统计量衡量相似度,如欧式距离、极端距离、绝对距离等
R型聚类分析:对指标进行分类处理,又称指标聚类分析 使用相似系数作为统计量衡量相似度,相关系数、列联系数等
2、方法分类:
1)系统聚类法: 适用于小样本的样本聚类或指标聚类,一般用系统聚类法来聚类指标,又称分层聚类
2)逐步聚类法 :适用于大样本的样本聚类
3)其他聚类法 :两步聚类、K均值聚类等
九、判别分析
1、判别分析:根据已掌握的一批分类明确的样品建立判别函数,使产生错判的事例最少,进而对给定的一个新样品,判断它来自哪个总体
2、与聚类分析区别
1)聚类分析可以对样本逬行分类,也可以对指标进行分类;而判别分析只能对样本
2)聚类分析事先不知道事物的类别,也不知道分几类;而判别分析必须事先知道事物的类别,也知道分几类
3)聚类分析不需要分类的历史资料,而直接对样本进行分类;而判别分析需要分类历史资料去建立判别函数,然后才能对样本进行分类
3、进行分类 :
1)Fisher判别分析法 :
以距离为判别准则来分类,即样本与哪个类的距离最短就分到哪一类, 适用于两类判别;
以概率为判别准则来分类,即样本属于哪一类的概率最大就分到哪一类,适用于
适用于多类判别。
2)BAYES判别分析法 :
BAYES判别分析法比FISHER判别分析法更加完善和先进,它不仅能解决多类判别分析,而且分析时考虑了数据的分布状态,所以一般较多使用;
十、主成分分析
将彼此梠关的一组指标变适转化为彼此独立的一组新的指标变量,并用其中较少的几个新指标变量就能综合反应原多个指标变量中所包含的主要信息 。
十一、因子分析
一种旨在寻找隐藏在多变量数据中、无法直接观察到却影响或支配可测变量的潜在因子、并估计潜在因子对可测变量的影响程度以及潜在因子之间的相关性的一种多元统计分析方法
与主成分分析比较:
相同:都能够起到済理多个原始变量内在结构关系的作用
不同:主成分分析重在综合原始变适的信息.而因子分析重在解释原始变量间的关系,是比主成分分析更深入的一种多元统计方法
用途:
1)减少分析变量个数
2)通过对变量间相关关系探测,将原始变量进行分类
十二、时间序列分析
动态数据处理的统计方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题;时间序列通常由4种要素组成:趋势、季节变动、循环波动和不规则波动。
主要方法:移动平均滤波与指数平滑法、ARIMA横型、量ARIMA横型、ARIMAX模型、向呈自回归横型、ARCH族模型
十三、生存分析
用来研究生存时间的分布规律以及生存时间和相关因索之间关系的一种统计分析方法
1、包含内容:
1)描述生存过程,即研究生存时间的分布规律
2)比较生存过程,即研究两组或多组生存时间的分布规律,并进行比较
3)分析危险因素,即研究危险因素对生存过程的影响
4)建立数学模型,即将生存时间与相关危险因素的依存关系用一个数学式子表示出来。
2、方法:
1)统计描述:包括求生存时间的分位数、中数生存期、平均数、生存函数的估计、判断生存时间的图示法,不对所分析的数据作出任何统计推断结论
2)非参数检验:检验分组变量各水平所对应的生存曲线是否一致,对生存时间的分布没有要求,并且检验危险因素对生存时间的影响。
A 乘积极限法(PL法)
B 寿命表法(LT法)
3)半参数横型回归分析:在特定的假设之下,建立生存时间随多个危险因素变化的回归方程,这种方法的代表是Cox比例风险回归分析法
4)参数模型回归分析:已知生存时间服从特定的参数横型时,拟合相应的参数模型,更准确地分析确定变量之间的变化规律
十四、典型相关分析
相关分析一般分析两个变里之间的关系,而典型相关分析是分析两组变里(如3个学术能力指标与5个在校成绩表现指标)之间相关性的一种统计分析方法。
典型相关分析的基本思想和主成分分析的基本思想相似,它将一组变量与另一组变量之间单变量的多重线性相关性研究转化为对少数几对综合变量之间的简单线性相关性的研究,并且这少数几对变量所包含的线性相关性的信息几乎覆盖了原变量组所包含的全部相应信息。
十五、R0C分析
R0C曲线是根据一系列不同的二分类方式(分界值或决定阈).以真阳性率(灵敏度)为纵坐标,假阳性率(1-特异度)为横坐标绘制的曲线
用途:
1、R0C曲线能很容易地査出任意界限值时的对疾病的识别能力
用途
2、选择最佳的诊断界限值。R0C曲线越靠近左上角,试验的准确性就越高;
3、两种或两种以上不同诊断试验对疾病识别能力的比较,一股用R0C曲线下面积反映诊断系统的准确性。
十六、其他分析方法
多重响应分析、距离分祈、项目分祈、对应分祈、决策树分析、神经网络、系统方程、蒙特卡洛模拟等。
‘叁’ 数据分析的六种基本分析方法
数据分析的六种基本分析方法:
1、对比分析法:常用于对纵向的、横向的、最为突出的、计划与实际的等各种相关数据的。例如:今年与去年同期工资收入的增长情况、3月CPI环比增长情况等。
2、趋势分析法:常用于在一段时间周期内,通过分析数据运行的变化趋势(上升或下降),为未来的发展方向提供帮助。例如:用电量的季节性波动、股市的涨跌趋势等。
3、相关分析法:常用于分析两个或多个变量之间的性质以及相关程度。例如:气温与用电量的相关性、运动量大小与体重的相关性等。
4、回归分析法:常用于分析一个或多个自变量的变化对一个特定因变量的影响程度,从而确定其关系。例如:气温、用电设备、用电时长等因素对用电量数值大小的影响程度、工资收入的高低对生活消费支出大小的影响程度等。
5、描述性分析法:常用于对一组数据样本的各种特征进行分析,以便于描述样本的各种及其所代表的总体的特征。例如:本月日平均用电量、上海市工资收入中位数等。
6、结构分析法:常用于分析数据总体的内部特征、性质和变化规律等。例如:各部分用电量占总用电的比重、生活消费支出构成情况等。
‘肆’ 数据分析的方法
数据分析通常包括以下几个步骤:
数据收集:获取需要分析的数据,可以是从各种数据源收集数据或者自己采集数据。
数据清洗:对数据进行清理和整理,包括去除重复数据、缺失数据、异常数据、格式转换等操作,使数据能够被更好地分析和利用。
数据探索:对数据进行可视化展示和统计分析,探索数据的分布、特征、关系和趋势等。
数据建模:根据数据分析的结果,利用统计学方法或机器学习算法构建模型,用于预测和分析未来的数据情况。
数据解释:将数据分析的结果进行解释和应用,为决策提供支持和参考。
而对于更具体的数据分析方法,我将依次列举:
描述性统计:用于描述数据的分布、中心位置、离散程度和对称性等特征。常用的描述性统计方法包括均值、中位数、标准差、偏度、峰度等。
假设检验:用于检验某个假链旦设是否成立,例如检验两组数据之间的差异是否显着。常用的假设检验方法包括t检验、ANOVA分析、卡方检验等。
相关分析:用于分析两个或多个变量之间的关系。常用的相关分析方法包括皮尔逊相关系数、斯皮尔曼相关系数、卡方检验等。
回归分析:用于研究一个或多个自变量与一个因变量之间的关系。常用的回归分析方法包括线性回归、逻辑回归、多元回归等。
聚类分析:用于将数据集中的样本划分为若干个互不重叠的子集,每个子集内部的样本相似度较高,不同子集之间的样本相似度较低。常用的聚类分析方法包括K均值聚类、层次聚类等。
分类分析:用于根据已知样本的特征,对未知样本进行分类。常用的分类分析方法包括决策树、支持向量机、朴素贝叶斯等。
时间序列分析:用于研究时间序列数据的规律和趋势,常用于经济、金融和股市等领域。常用的时间序列分析方法包括ARIMA模型、指数平滑模型、神经网络模型等。
以上是常见的数据分析方法
‘伍’ 数据分析方法
常见的分析方法有:分类分析,矩阵分析,漏斗分析,相关分析,逻辑树分析,趋势分析,行为轨迹分析,等等。 我用HR的工作来举例,说明上面这些分析要怎么做,才能得出洞见。
01) 分类分析
比如分成不同部门、不同岗位层级、不同年龄段,来分析人才流失率。比如发现某个部门流失率特别高,那么就可以去分析。
02) 矩阵分析
比如公司有价值观和能力的考核,那么可以把考核结果做出矩阵图,能力强价值匹配的员工、能力强价值不匹配的员工、能力弱价值匹配的员工、能力弱价值不匹配的员工各占多少比例,从而发现公司的人才健康度。
03) 漏斗分析
比如记录招聘数据,投递简历、通过初筛、通过一面、通过二面、通过终面、接下Offer、成功入职、通过试用期,这就是一个完整的招聘漏斗,从数据中,可以看到哪个环节还可以优化。
04) 相关分析
比如公司各个分店的人才流失率差异较大,那么可以把各个分店的员工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、员工年龄、管理人员年龄等)要素进行相关性分析,找到最能够挽留员工的关键因素。
05) 逻辑树分析
比如近期发现员工的满意度有所降低,那么就进行拆解,满意度跟薪酬、福利、职业发展、工作氛围有关,然后薪酬分为基本薪资和奖金,这样层层拆解,找出满意度各个影响因素里面的变化因素,从而得出洞见。
06) 趋势分析
比如人才流失率过去12个月的变化趋势。
07)行为轨迹分析
比如跟踪一个销售人员的行为轨迹,从入职、到开始产生业绩、到业绩快速增长、到疲惫期、到逐渐稳定。
‘陆’ 数据分析的方法有哪些
数据分析的方法有:对比分析法,分组分析法,预测分析法,漏斗分析法,AB测试分析法,象限分析法,公式拆解法,可行域分析法,二八分析法,假设性分析法。
1.对比分析法:对比分析法指通过指标的对比来反映事物数量上的变化,属于统计分析中常用的方法。常见的对比有横向对比和纵向对比。
横向对比指的是不同事物在固定时间上的对比,例如,不同等级的用户在同一时间购买商品的价格对比,不同商品在同一时间的销量、利润率等的对比。
数据分析方法是数据统计学当中应用非常广泛的方法,具体方法有很多种,具体采用的时候因人而异。
‘柒’ 数据分析有哪些分析方法
数据分析方法有很多。
常见的有:1、描述统计。2、假设检验。3、信度分析。4、列联表分析。5、相关分析。6、方差分析。7、回归分析。8、聚类分析。9、判别分析等。
还包括多重响应分析、举例分析、项目分析、对应分析、决策树分析、顺境网络、系统方程、蒙特卡洛模拟等等。