A. 数据收集和分析常用方法
一、头脑风暴法:
常用于“收集需求”过程中,属于群体创新技术。联想是产生新观念的基本过程。在集体讨论问题的过程中,每提出一个新的观念,都能引发他人的联想。相继产生一连串的新观念,产生连锁反应,形成新观念堆,为创造性地解决问题提供了更多的可能性。
在不受任何限制的情况下,集体讨论问题能激发人的热情。人人自由发言、相互影响、相互感染,能形成热潮,突破固有观念的束缚,最大限度地发挥创造性地思维能力。
在有竞争意识情况下,人人争先恐后,竞相发言,不断地开动思维机器,力求有独到见解,新奇观念。心理学的原理告诉我们,人类有争强好胜心理,在有竞争意识的情况下,人的心理活动效率可增加50%或更多。
二、德尔菲技术:
常用于“收集需求”过程中,属于群体创新技术。这一方法的步骤是:
(1)根据问题的特点,选择和邀请做过相关研究或有相关经验的专家。
(2)将与问题有关的信息分别提供给专家,请他们各自独立发表自己的意见,并写成书面材料。
(3)管理者收集并综合专家们的意见后,将综合意见反馈给各位专家,请他们再次发表意见。如果分歧很大,可以开会集中讨论;否则,管理者分头与专家联络。
(4)如此反复多次,最后形成代表专家组意见的方案。
德尔菲法的典型特征
(1)吸收专家参与预测,充分利用专家的经验和学识;
(2)采用匿名或背靠背的方式,能使每一位专家独立自由地作出自己的判断;
(3)预测过程几轮反馈,使专家的意见逐渐趋同。
优点:能充分发挥各位专家的作用,集思广益,准确性高。能把各位专家意见的分歧点表达出来,取各家之长,避各家之短。
缺点:德尔菲法的主要缺点是过程比较复杂,花费时间较长。
三、帕累托图:
常用于“实施质量控制”过程中。帕累托图又叫排列图、主次图,是按照发生频率大小顺序绘制的直方图,表示有多少结果是由已确认类型或范畴的原因所造成。它是将出现的质量问题和质量改进项目按照重要程度依次排列而采用的一种图表。可以用来分析质量问题,确定产生质量问题的主要因素。标准帕累托图按等级排序的目的是指导如何采取纠正措施:项目班子应首先采取措施纠正造成最多数量缺陷的问题。从概念上说,帕累托图与帕累托法则一脉相承,该法则认为相对来说数量较少的原因往往造成绝大多数的问题或缺陷。
排列图用双直角坐标系表示,左边纵坐标表示频数,右边纵坐标表示频率.分析线表示累积频率,横坐标表示影响质量的各项因素,按影响程度的大小(即出现频数多少)从左到右排列,通过对排列图的观察分析可以抓住影响质量的主要因素.
帕累托法则往往称为二八原理,即百分之八十的问题是百分之二十的原因所造成的。帕累托图在项目管理中主要用来找出产生大多数问题的关键原因,用来解决大多数问题。
X(经典帕累托图)
四、控制图:
常用于“规划质量、实施质量控制”过程中,就是对生产过程的关键质量特性值进行测定、记录、评估并监测过程是否处于控制状态的一种图形方法。根据假设检验的原理构造一种图,用于监测生产过程是否处于控制状态。它是统计质量管理的一种重要手段和工具。
它是一种有控制界限的图,用来区分引起的原因是偶然的还是系统的,可以提供系统原因存在的资讯,从而判断生产过于受控状态。控制图按其用途可分为两类,一类是供分析用的控制图,用来控制生产过程中有关质量特性值的变化情况,看工序是否处于稳定受控状;再一类的控制图,主要用于发现生产过程是否出现了异常情况,以预防产生不合格品。
7点规则:如果遇到连续7点数据落在平均线的同一侧。那么,应当考虑是否存在特殊原因。因为,一个点落在平均线一侧的概率是1/2。连续两点落在同一侧的概率是1/2中的1/2=1/4。连续三点落在同一侧的概率是1/4中的1/2=1/8。如此下去,连续七点落在同一侧的概率是(1/2)X(1/2)X(1/2)X(1/2)X(1/2)X(1/2)X(1/2)=1/128=0.0078。这个概率值是千分之8。这个概率应当讲是很小的。当我们在生产抽样的时候,这样小的概率是不应当被抽到的。现在被抽到了,说明不正常了,就有可能发生了特殊原因。
五、SWOT分析:
常用于“识别风险”过程中,其中,S代表strength(优势),W代表weakness(弱势),O代表opportunity(机会),T代表threat(威胁)。其中,S、W是内部因素,O、T是外部因素。这种分析常用于企业内部分析方法,即根据企业自身的既定内在条件进行分析,找出企业的优势、劣势及核心竞争力之所在。
近来,SWOT分析已广被应用在许多领域上,如学校的自我分析、个人的能力自我分析等方面。比如,在利用SWOT对自己进行职业发展分析时,可以遵循以下五个步骤:
第一步,评估自己的长处和短处每个人都有自己独特的技能、天赋和能力。在当今分工非常细的环境里,每个人擅长于某一领域,而不是样样精通。(当然,除非天才)。举个例子,有些人不喜欢整天坐在办公室里,而有些人则一想到不得不与陌生人打交道时,心里就发麻,惴惴不安。请作个列表,列出你自己喜欢做的事情和你的长处所在。同样,通过列表,你可以找出自己不是很喜欢做的事情和你的弱势。找出你的短处与发现你的长处同等重要,因为你可以基于自己的长处和短处上,作两种选择;或者努力去改正常的错误,提高你的技能,或是放弃那些对你不擅长的技能要求的学系。列出你认为自己所具备的很重要的强项和对你的学习选择产生影响的弱势,然后再标出那些你认为对你很重要的强弱势。
第二步,找出您的职业机会和威胁。我们知道,不同的行业(包括这些行业里不同的公司)都面临不同的外部机会和威胁,所以,找出这些外界因素将助您成功地找到一份适合自己的工作,对您求职是非常重要的,因为这些机会和威胁会影响您的第一份工作和今后的职业发展。如果公司处于一个常受到外界不利因素影响的行业里,很自然,这个公司能提供的职业机会将是很少的,而且没有职业升迁的机会。相反,充满了许多积极的外界因素的行业将为求职者提供广阔的职业前景。请列出您感兴趣的一两个行业,然后认真地评估这些行业所面临的机会和威胁。
第三步,提纲式地列出今后3-5年内您的职业目标。仔细地对自己做一个SWOT分析评估,列出您5年内最想实现的四至五个职业目标。这些目标可以包括:您想从事哪一种职业,您将管理多少人,或者您希望自己拿到的薪水属哪一级别。请时刻记住:您必须竭尽所能地发挥出自己的优势,使之与行业提供的工作机会完满匹配。
第四步,提纲式地列出一份今后3-5年的职业行动计划。这一步主要涉及到一些具体的内容。请您拟出一份实现上述第三步列出的每一目标的行动计划,并且详细地说明为了实现每一目标,您要做的每一件事,何时完成这些事。如果您觉得您需要一些外界帮助,请说明您需要何种帮助和您如何获取这种帮助。例如,您的个人SWOT分析可能表明,为了实现您理想中的职业目标,您需要进修更多的管理课程,那么,您的职业行动计划应说明要参加哪些课程、什么水平的课程以及何时进修这些课程等等。您拟订的详尽的行动计划将帮助您做决策,就像外出旅游前事先制定的计划将成为您的行动指南一样。
第五步,寻求专业帮助。能分析出自己职业发展及行为习惯中的缺点并不难,但要去以合适的方法改变它们却很难。相信您的朋友、上级主管、职业咨询专家都可以给您一定的帮助,特别是很多时候借助专业的咨询力量会让您大走捷径。有外力的协助和监督也会让您更好的取得效。
六、敏感性分析:
常用于“实施定量风险分析”过程中,敏感性分析的作用是确定影响项目风险的敏感因素。寻找出影响最大、最敏感的主要变量因素,进一步分析、预测或估算其影响程度,找出产生不确定性的根源,采取相应有效措施。敏感性分析有助于确定哪些风险对项目具有最大的潜在影响。它把所有其他不确定因素保持在基准值的条件下,考察项目的每项要素的不确定性对日标产生多大程度的影响。敏感性分析最常用的显示方式是龙卷风图。龙卷风图有助于比较具有较高不确定性的变量与相对稳定的变量之间的相对重要程度。
七、预期货币价值:
又称风险暴露值、风险期望值,是定量风险分析的一种技术,常和决策树一起使用,它是将特定情况下可能的风险造成的货币后果和发生概率相乘,此项目包含了风险和现金的考虑。正值表示机会,负值表示风险。每个可能结果的数值与发生机率相乘后加总即得到。
例:一专案投资100万,有50%机率会延误而罚款20万则EMV值为多少?
答:100+(-20*50%)=90
八、蒙特卡罗法:
用于定量风险分析,是一种采用随机抽样(Random Sampling)统计来估算结果的计算方法。项目管理中蒙特卡罗模拟方法的一般步骤是:
1.对每一项活动,输入最小、最大和最可能估计数据,并为其选择一种合适的先验分布模型;
2.计算机根据上述输入,利用给定的某种规则,快速实施充分大量的随机抽样
3.对随机抽样的数据进行必要的数学计算,求出结果
4.对求出的结果进行统计学处理,求出最小值、最大值以及数学期望值和单位标准偏差
5.根据求出的统计学处理数据,让计算机自动生成概率分布曲线和累积概率曲线(通常是基于正态分布的概率累积S曲线)
6.依据累积概率曲线进行项目风险分析。
B. 人力资源管理在工作分析中,搜集信息的方法有哪些
工作分析中搜集信息的方法主要有:资料分析法(利用现有资料如岗位责任制等)、访谈法(与任职者就该项工作进行面对面的谈话:关于工作目标,工作内容,所负责任,所需知识与技能等)、观察法(观察员工的工作过程、行为、内容、特点、性质等)、问卷调查法(当工作分析牵涉到分布较广的大量员工时,问卷调查法是最有效率的方法)。
C. 数据收集有哪些方法
数据收集的四种常见的方式包括问卷调查、查阅资料、实地考查、试验,几种方法各有各的又是和缺点,具体分析如下。
四是实验。实验设计数据是四种方法中最耗时间的一种,因为它是通过各种各样的实验来得到一个统一的方向,也就是说,在这个过程中,可能有无数次的失败。但是实验得到的数据是最准确的,而且可能会推动某个行业的进步。所以,实验收集数据的优点是数据的准确性很高,而他的缺点就是未知性很大,不管实验的周期还是实验的结果都是不确定性的。
随着科技的发展和大数据时代的到来,收集数据越来越容易,而大家也应该更注重于保护和利用数据。