㈠ 跪求数学分析解题技巧方法~~~
对于两个实力相当的同学,在考试中某些解题策略技巧使用的好坏,往往会导致两人最后的成绩有很大的差距。 一、选择题解题策略 数学选择题具有概栝性强,知识覆盖面广,小巧灵活,有一定的综合性和深度等特点,考生能否迅速、准确、全面、简捷地解好选择题,成为高考成功的关键。 解选择题的基本要求是熟练准确,灵活快速,方法得当,出奇制胜。解题一般有三种思路:一是从题干出发考虑,探求结果;二是题干和选择支联合考虑;三是从选择支出发探求满足题干的条件。 选择题属易题(个别为中档题),解题基本原则是:“小题不可大做”。 1、直接法:涉及数学定理、定义、法则、公式的问题,常从题设条件出发,通过运算或推理,直接求得结论;再与选择支对照。 例:已知函数y=f(x)存在反函数y=g(x),若f(3)=-1,则函数y=g(x-1)的图像在下列各点中必经过( ) A.(-2,3) B.(0,3) C.(2,-1) D.(4,-1)解:由题意函数y=f(x)图像过点(3,-1),它的反函数y=g(x)的图像经过点(-1,3),由此可得函数y=g(x-1)的图像经过点(0,3),故选B。 2、筛选法(排除法、淘汰法):充分运用选择题中单选的特征,通过分析、推理、计算、判断,逐一排除错误支,得到正确支的解法。 例.若x为三角形中的最小内角,则函数y=sinx cosx值域是( )A.(1,]B.(0,] C.[,]D.(,] 解:因x为三角形中的最小内角,故x∈(0,),由此可得y=sinx cosx>1,排除错误支B,C,D,应选A。 3、图象法(数形结合):通过数形结合的思维过程,借于图形直观,迅速做出选择的方法。 例.已知α、β都是第二象限角,且cosα>cosβ,则( ) A.α<βB.sinα>sinβC.tanα>tanβD.cotα<cotβ 解:在第二象限内通过余弦函数线cosα>cosβ找出α、β的终边位置关系,再作出判断,得B。
㈡ 数学分析的研究方法
数学分析的研究方法:
数学分析方法的优缺点:
优点:在特定的条件下,数学分析方法可以使决策工作建立在科学的基础之上;数学分析法可以使复杂的数学程序变得简单明了,有利于提高决策效率;在有关的网络系统中,借助于数学分析方法,能帮助管理者解决复杂的问题;线性规划和决策树等方法都有利于制定一系列活动的步骤,便于了解各种活动之间的关系,从而实现科搭郑学的决策等。
缺点:数学模型本身不一定能很好地反映现实中的有关问题,因为许多数学模型都是建立在不一定正确的假设基础之上的,而且,在现实生活中,并不是所有的问题都能用数字来表达;过分依赖数学模型来进行决策活动,就要专门培养一批从事数学模型设计和应用的人才,而这些专门人才却难以在其他方面发挥作用。