导航:首页 > 研究方法 > 一元线性回归分析检验的方法

一元线性回归分析检验的方法

发布时间:2024-01-05 18:12:42

① 一元线性回归预测法的模型检验

1、经济意义检验:就是根据模型中各个参数的经济含义,分析各参数的值是否与分析对象的经济含义相符。
2、回归标准差检验
3、拟合优度检验
4、回归系数的显着性检验 可以分为:点预测和置信区间预测法
1、点预测法:将自变量取值带入回归预测模型求出因变量的预测值。
2、置信区间预测法:估计一个范围,并确定该范围出现的概率。置信区间的大小的影响的因素:a、因变量估计值;b、回归标准差;C、概率度t。 一元线性回归分析预测法,是根据自变量x和因变量Y的相关关系,建立x与Y的线性回归方程进行预测的方法。由于市场现象一般是受多种因素的影响,而并不是仅仅受一个因素的影响。所以应用一元线性回归分析预测法,必须对影响市场现象的多种因素做全面分析。只有当诸多的影响因素中,确实存在一个对因变量影响作用明显高于其他因素的变量,才能将它作为自变量,应用一元相关回归分析市场预测法进行预测。
一元线性回归分析法的预测模型为:
式中,xt代表t期自变量的值;
代表t期因变量的值;
a、b代表一元线性回归方程的参数。
a、b参数由下列公式求得(用代表):
为简便计算,我们作以下定义:
(2)
式中:
这样定义a、b后,参数由下列公式求得:
将a、b代入一元线性回归方程Yt = a + bxt,就可以建立预测模型,那么,只要给定xt值,即可求出预测值。
在回归分析预测法中,需要对X、Y之间相关程度作出判断,这就要计算相关系数Y,其公式如下:
相关系数r的特征有:
①相关系数取值范围为:-1≤r≤1 。
②r与b符合相同。当r>0,称正线性相关,Xi上升,Yi呈线性增加。当r<0,称负线性相关,Xi上升,Yi呈线性减少。
③|r|=0,X与Y无线性相关关系;|r|=1,完全确定的线性相关关系;0<|r|<1,X与Y存在一定的线性相关关系;|r|&gt;0.7,为高度线性相关;0.3<|r|≤0.7,为中度线性相关;|r|≤0.3,为低度线性相关。

② 回归分析方法

§3.2 回归分析方法
回归分析方法,是研究要素之间具体的数量关系的一种强有力的工具,能够建立反映地理要素之间具体的数量关系的数学模型,即回归模型。
1. 一元线性回归模型
1) 一元线性回归模型的基本结构形式
假设有两个地理要素(变量)x和y,x为自变量,y为因变量。则一元线性回归模型的基本结构形式:

a和b为待定参数;α=1,2,…,n为各组观测数据的下标; εa为随机变量。如果记a^和b^ 分别为参数a与b的拟合值,则得到一元线性回归模型

ÿ 是y 的估计值,亦称回归值。回归直线——代表x与y之间相关关系的拟合直线

2) 参数a、b的最小二ÿ乘估计
参数a与b的拟合值:

,

建立一元线性回归模型的过程,就是用变量 和 的实际观测数据确定参数a和b的最小二乘估计值α^和β^ 的过程。
3) 一元线性回归模型的显着性检验
线性回归方程的显着性检验是借助于F检验来完成的。
检验统计量F:

误差平方和:

回归平方和:

F≈F(1,n-2)。在显着水平a下,若 ,则认为回归方程效果在此水平下显着;当 时,则认为方程效果不明显。

[举例说明]
例1:在表3.1.1中,将国内生产总值(x1)看作因变量y,将农业总产值(x2)看作自变量x,试建立它们之间的一元线性回归模型并对其进行显着性检验。
解:
(1) 回归模型
将y和x的样本数据代入参数a与b的拟合公式,计算得:

故,国内生产总值与农业总产值之间的回归方程为

(2) 显着性检验

在置信水平α=0.01下查F分布表得:F0.01(1,46)=7.22。由于F=4951.098 >> F0.01(1,46)=7.22,所以回归方程(3.2.7)式在置信水平a=0.01下是显着的。

2. 多元线性回归模型
在多要素的地理系统中,多个(多于两个)要素之间也存在着相关影响、相互关联的情况。因此,多元地理回归模型更带有普遍性的意义。
1) 多元线性回归模型的建立
(1) 多元线性回归模型的结构形式
假设某一因变量y受k 个自变量 的影响,其n组观测值为 。则多元线性回归模型的结构形式:

为待定参数, 为随机变量。如果 分别为 的拟合值,则回归方程为

b0为常数, 称为偏回归系数。
偏回归系数 ——当其它自变量都固定时,自变量 每变化一个单位而使因变量xi平均改变的数值。

(2) 求解偏回归系数

,

2) 多元线性回归模型的显着性检验
用F检验法。
F统计量:

当统计量F计算出来之后,就可以查F分布表对模型进行显着性检验。
[举例说明]
例2:某地区各城市的公共交通营运总额(y)与城市人口总数(x1 )以及工农业总产值(x2)的年平均统计数据如表3.2.1(点击展开显示该表)所示。试建立y与x1及x2之间的线性回归模型并对其进行显着性检验。

表3.2.1 某地区城市公共交通营运额、人口数及工农业总产值的年平均数据

城市序号

公共交通营运额y/103人公里 人口数x1/103人 工农业总产值x2
/107元
1 6825.99 1298.00 437.26
2 512.00 119.80 1286.48
... ... ... ...
14 192.00 12.47 1072.27
注:本表数据详见书本P54。
解:
(1) 计算线性回归模型
由表3.2.1中的数据,有

计算可得:

故y与x1 及y2之间的线性回归方程

(2) 显着性检验

故:

在置信水平a=0.01下查F分布表知:F0.01(2,11)=7.21。由于F=38.722> F0.01(2,11)=7.21,所以在置信水平a=0.01下,回归方程式是显着的。

3. 非线性回归模型的建立方法
1) 非线性关系的线性化
(1) 非线性关系模型的线性化
对于要素之间的非线性关系通过变量替换就可以将原来的非线性关系转化为新变量下的线性关系。
[几种非线性关系模型的线性化]

① 于指数曲线 ,令 , ,将其转化为直线形式:
,其中, ;
② 对于对数曲线 ,令 , ,将其转化为直线形式:

③ 对于幂函数曲线 ,令 , ,将其转化为直线形式:
,其中,
④ 对于双曲线 ,令 ,将其转化为直线形式:

⑤ 对于S型曲线 ,将其转化为直线形式:


⑥ 对于幂函数乘积:

令 将其转化为直线形式:

其中, ;
⑦ 对于对数函数和:

令 ,将其化为线性形式:

(2) 建立非线性回归模型的一般方法
① 通过适当的变量替换将非线性关系线性化;
② 用线性回归分析方法建立新变量下的线性回归模型:
③ 通过新变量之间的线性相关关系反映原来变量之间的非线性相关关系。
3) 非线性回归模型建立的实例

非线性回归模型建立的实例

景观是地理学的重要研究内容之一。有关研究表明(Li,2000;徐建华等,2001),任何一种景观类型的斑块,其面积(Area)与周长(Perimeter)之间的数量关系可以用双对数曲线来描述,即

例3:表3.2.2给出了某地区林地景观斑块面积(Area)与周长(Perimeter)的数据。试建立林地景观斑块面积A与周长P之间的双对数相关关系模型。

表3.2.2某地区各个林地景观斑块面积(m2)与周长(m)

序号 面积A 周长P 序号 面积A 周长P
1 10447.370 625.392 42 232844.300 4282.043
2 15974.730 612.286 43 4054.660 289.307
... ... ... ... ... ...
41 1608.625 225.842 82 564370.800 12212.410

注:本表数据详见书本57和58页。

解:因为林地景观斑块面积(A)与周长(P)之间的数量关系是双对数曲线形式,即

所以对表3.2.2中的原始数据进行对数变换,变换后得到的各新变量对应的观测数据如表3.2.3所示。

阅读全文

与一元线性回归分析检验的方法相关的资料

热点内容
磁铁的简便方法怎么做 浏览:888
香料怎么种植方法 浏览:364
银针擦根的方法视频 浏览:406
世界投资分析方法 浏览:847
分析多动症最简单方法 浏览:806
练肌肉的最好方法视频 浏览:916
政治题如何学习的答题方法 浏览:909
正确吃牛排的方法 浏览:661
取法魏晋的最佳方法 浏览:524
中华结缕草种植方法 浏览:143
财务报表分析横向分析方法 浏览:712
失眠了怎么办最简单的方法ld 浏览:654
儿童清洁鼻子的最佳方法 浏览:237
硒麦芽如何食用方法 浏览:798
腕管综合征如何锻炼方法 浏览:720
大球的分析方法 浏览:231
5乘58乘4乘5的简便方法 浏览:216
给婆婆洗衣服的正确方法 浏览:186
如何找出一篇论文的理论方法 浏览:813
125乘46乘8简便方法怎么写 浏览:982