导航:首页 > 研究方法 > 数据分析思维的7个方法

数据分析思维的7个方法

发布时间:2023-12-18 09:11:03

㈠ 数据分析方法哪些

常用的数据分析方法有:聚类分析、因子分析、相关分析、对应分析、回归分析、方差分析。

1、聚类分析(Cluster Analysis)

聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。

2、因子分析(Factor Analysis)

因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。

3、相关分析(Correlation Analysis)

相关分析(correlation analysis),相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度。

4、对应分析(Correspondence Analysis)

对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。

5、回归分析

研究一个随机变量Y对另一个(X)或一组(X1,X2,?,Xk)变量的相依关系的统计分析方法。回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。

6、方差分析(ANOVA/Analysis of Variance)

又称“变异数分析”或“F检验”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显着性检验。由于各种因素的影响,研究所得的数据呈现波动状。

想了解更多关于数据分析的信息,推荐到CDA数据认证中心看看,CDA(Certified Data Analyst),即“CDA 数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的专业权威国际资格认证, 旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。 “CDA 数据分析师”具体指在互联网、金融、零售、咨询、电信、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、 提供决策的新型数据分析人才。

㈡ 数据分析的8个流程与7个常用思路

数据分析的8个流程与7个常用思路
在产品运营过程中,数据分析具有极其重要的战略意义,是产品优化和产品决策的核心大脑。因此做好数据分析,是产品运营中最重要的环节之一。
那么如何做好支付的数据分析呢?以下梳理出数据分析的8步流程,以及常见的7种分析思路。新手在启动数据分析前,最好跟主管或数据经验较丰富的童鞋确认每一步的分析流程。
一、数据分析八流程:
什么分析?
首先,你得知道为什么分析?弄清楚此次数据分析的目的。比如,这次短信方式的数据分析,为什么要做这个分析。你所有的分析都的围绕这个为什么来回答。避免不符合目标反复返工,这个过程会很痛苦。
分析目标是谁?
分析目标是谁? 要牢记清楚的分析因子,统计维度是订单,还是用户,还是金额,还是用户行为。避免把订单当用户算,把用户当订单算(上周运营同学真实案例),算出的结果是差别非常大的。
想达到什么效果?
通过分析各个维度的用户,订单,找到真正的问题。例如这次的XX通道的分析,全盘下线,或维持现状不动,都不符合利益最大化原则。通过分析,找到真正的问题根源,发现用户精细化运营已经非常必要了。
需要哪些数据?
支付的数据,茫茫大海,数据繁多,用“海”来形容一点都不为过。需要哪些源数据?付费总额,付费人数?新老用户维度?付费次数?转移人数?留存率?用户特征?画像?先整理好思路,列一个表。避免数据部门同学今天跑一个数据,明天又跑一个数据,数据部门同学也会比较烦。
如何采集?
直接数据库调取?或者交给程序猿导出? 自己写SQL?运营同学不妨都学一下SQL,自力更生。
如何整理?
整理数据是门技术活。不得不承认EXCEL是个强大工具,数据透视表的熟练使用和技巧,作为支付数据分析必不可少,各种函数和公式也需要略懂一二,避免低效率的数据整理。Spss也是一个非常优秀的数据处理工具,特别在数据量比较大,而且当字段由特殊字符的时候,比较好用。
如何分析?
整理完毕,如何对数据进行综合分析,相关分析?这个是很考验逻辑思维和推理能力的。同时分析推理过程中,需要对产品了如指掌,对用户很了解,对渠道很熟悉。看似一个简单的数据分析,其实是各方面能力的体现。首先是技术层面,对数据来源的抽取-转换-载入原理的理解和认识;其实是全局观,对季节性、公司等层面的业务有清晰的了解;最后是专业度,对业务的流程、设计等了如指掌。练就数据分析的洪荒之力并非一朝一夕之功,而是在实践中不断成长和升华。一个好的数据分析应该以价值为导向,放眼全局、立足业务,用数据来驱动增长。运营同学比较容易聚在某个点上转圈走不出来。
如何展现和输出?
数据可视化也是一个学问。如何用合适的图表表现?每一种图表的寓意是什么?下面列举下常用的8个图表:
(1)、折线图:合适用于随时间而变化的连续数据,例如随时间收入变化,及增长率变化。
(2)、柱型图:主要用来表示各组数据之间的差别。主要有二维柱形图、三维柱形图、圆柱图、圆锥图和棱锥图。如支付宝与微信覆盖率差别。
(3)、堆积柱形图:堆积柱形图不仅可以显示同类别中每种数据的大小,还可以显示总量的大小。例如我们需要表示各个支付方式的人数及总人数时。
(4)、线-柱图:这种类型的图不仅可以显示出同类别的比较,还可以显示出趋势情况。
(5)、条形图:类似于横向的柱状图,和柱状图的展示效果相同,主要用于各项类的比较。
(6)、饼图:主要显示各项占比情况。饼图一般慎用,除非占比区别非常明显。因为肉眼对对饼图的占比比例分辨并不直观。而且饼图的项,一般不要超过6项。6项后建议用柱形图更为直观。
(7)、复合饼图:一般是对某项比例的下一步分析。
(8)、母子饼图:可直观地分析项目的组成结构与比重。例如上次短信支付能力用户中,没有第3方支付能力的用户,中间有X%比例是没银行卡,X%比例是没微信支付账号等。
图表不必太花哨,一个表说一个问题就好。用友好的可视化图表,节省阅读者的时间,也是对阅读者的尊重。
有一些数据,辛辛苦苦做了整理和分析,最后发现对结论输出是没有关系的,虽然做了很多工作,但不能为了体现工作量而堆砌数据。
在展现的过程中,请注明数据的来源,时间,指标的说明,公式的算法,不仅体现数据分析的专业度,更是对报告阅读者的尊重。
二、数据分析七思路:
简单趋势
通过实时访问趋势了解产品使用情况。如总流水,总用户,总成功率,总转化率。
多维分解
根据分析需要,从多维度对指标进行分解。例如新老用户、支付方式、游戏维度、产品版本维度、推广渠道、来源、地区、设备品牌等等维度。
转化漏斗
按照已知的转化路径,借助漏斗模型分析总体和每一步的转化情况。常见的转化情境有下单率,成功转化率等。
用户分群
在精细化分析中,常常需要对有某个特定行为的用户群组进行分析和比对;数据分析需要将多维度和多指标作为分群条件,有针对性地优化产品,提升用户体验。例如我们这次对短信这类用户,短信里又有第3方和无第3方支付能力的,需要再进行分群的运营。
细查路径
数据分析可以观察用户的行为轨迹,探索用户与产品的交互过程;进而从中发现问题、激发灵感亦或验证假设。例如我们这次对新用户的运营,也非常有意思。
留存分析
留存分析是探索用户行为与回访之间的关联。一般我们讲的留存率,是指“新增用户”在一段时间内“回访”的比例。通过分析不同用户群组的留存差异、使用过不同功能用户的留存差异来找到产品的增长点。
A/B 测试
A/B测试就是同时进行多个方案并行测试,但是每个方案仅有一个变量不同;然后以某种规则(例如用户体验、数据指标等)优胜略汰选择最优的方案。数据分析需要在这个过程中选择合理的分组样本、监测数据指标、事后数据分析和不同方案评估。
不单是支付的数据分析,其他的产品运营数据分析流程和思路也一样适用,只是支付数据相对其他产品而言,维度很多,以及组合的维度也非常多,因此就需要更清晰的思路和大局观,避免陷入到数据海洋中。

㈢ 入门必备!数据分析的3大思维和7种技巧

如果我们在分析一个问题前,思维缺失就像下面图中所表达的一样,往往不知道问题从哪里下手,在这个时候就轮到平时锻炼的数据分析思维了。

结构化

可以看作金字塔思维,把待分析问题按不同方向去分类,然后不断拆分细化,能全方位的思考问题,一般是先把所有能想到的一些论点先写出来,然后在进行整理归纳成金字塔模型。主要通过前面介绍的思维导图来写我们的分析思维。

公式化

在结构化的基础上,这些论点往往会存在一些数量关系,使其能进行+、-、×、÷的计算,将这些论点进行量化分析,从而验证论点

业务化

业务化即是深入了解业务情况,结合该项目的具体业务进行分析,并且能让分析结果进行落地执行。用结构化思考+公式化拆解得出的最终分析论点再很多时候表示的是一种现象,不能体现产生结果的原因。所以需要继续去用业务思维去思考,站在业务人员或分析对象的角度思考问题,深究出现这种现象的原因或者通过数据推动业务。

增加业务思维方法:贴近业务,换位思考,积累经验

在数据分析中,三种核心数据分析思维是框架型的指引,实际应用中还是需要很多技巧工具的。7种数据分析技巧,它们分别是象限法,多维法,假设法,指数法,二八法,对比法,漏斗法。

象限法

通过对两种维度的划分,运用坐标的方式表达出想要的价值,由价值直接转变为策略,从而进行一些落地的推动。象限法是一种策略驱动的思维,广泛应用于战略分析,产品分析,市场分析,客户管理,用户管理,商品管理等。

下图是RFM模型,把客户按最近一次消费(Recency)、消费频率(Frequency)、消费金额 (Monetary)三个维度分成八个象限。

菜品销售增长率和销售利润

多维法

多维法是指对分析对象从多个维度去分析,这里一般是三个维度,每个维度有不同数据分类,这样代表总数据的大正方体就被分割成一个个小方块,落在同一个小方块的数据拥有同样的属性,这样可以通过对比小方块内的数据进行分析。如图,这是一个快餐店的外卖订单多维表:

虽然只有下单时间、菜品名称、平台三个维度。但根据这个立方体,已经能解决很多掌柜急需了解的问题了。

我们可以通过切片实现每个平台每种菜品的销量,每个月每种菜品的销量,某个月某平台菜品销售情况等等操作。

假设法

在一些情况下,如进入新市场的销量、商品提价后销量的变化情况,可能没有明细数据进行分析,那么就需要用到假设法。假设法也就是假设一个变量或者比率成立,然后根据部分数据进行反推,这是一种启发思维的技巧,一般过程是先假设后验证然后判断出分析结果。

例题:你是自营电商分析师,现在想将商品提价,你分析下销售额会有怎样的变化?解答思路:首先可以确定销量会下降,那么下降多少?这里就要假设商品流量情况,提价后转化率的变化情况,然后根据历史数据汇总出销量下降百分百,从而得出销售额的变化情况。

指数法

指数法是把某个数据多个指标按一定的计算转化为同度量的一个值,这个度量值称为指数。例如在一场游戏竞技比赛中要确定该场的MVP,则是需要根据击杀数、死亡数、助攻数、经济、补兵等指标进行综合计算出一个得分,得分高的为MVP。

指数法常用的有线性加权、反比例、log三种。线性加权即是把每个指标乘以一个系数后相加,反比例即是用数学上的反比例函数y=k/x变化后在计算,log即是数学中所说的对数一般以2为底数或者10为底数。指数法使用没有统一标准,一般是根据经验来做,将无法利用的数据加工成可以可利用的。例如,NBA计算最有价值球员的指数参考:

二八法

二八法即是二八法则也可以叫做帕累托法则,比如在个人财富上可以说世界上20%的人掌握80%的财富。而在数据分析中,则可以理解为20%的数据产生了80%的效果需要围绕这20%的数据进行挖掘。往往在使用二八法则的时候和排名有关系,排在前20%的才算是有效数据。二八法是抓重点分析,适用于任何行业。找到重点,发现其特征,然后可以思考如何让其余的80%向这20%转化,提高效果。

对比法

对比法就是用两组或两组以上的数据进行比较,常见的是用于在时间维度上的同比和环比、定基比,与竞争对手的对比、类别之间的对比、特征和属性对比等。对比法可以发现数据变化规律,使用非常频繁,多与前面的技巧结合使用。

漏斗法

漏斗法即是漏斗图,有点像倒金字塔,是一个流程化思考方式,常用于像新用户的开发、购物转化率这些有变化和一定流程的分析中。不过,单一的漏斗分析是没有用的,不能得出什么结果,要与其它相结合,如与历史数据的对比等。

下图我用BI商业智能工具FineBI连接了CRM系统的数据,对客户的行为数据做了漏斗图形式的展现。

最后,说了这么多方法,赶紧拿起小本本记下来吧!

㈣ 数据分析思路都有哪些

1、趋势分析

最简单、最常见的数据分析方法,一般用于核心指标的长期跟踪,比如点击率、GMV、活跃用户数。可以看出数据有那些趋势上的变化,有没有周期性,有没有拐点等,继而分析原因。


2、多维分解


也就是通过不同的维度对于数据进行分解,以获取更加精细的数据洞察。举个例子,对网站维护进行数据分析,可以拆分出地区、访问来源、设备、浏览器等等维度。


3、用户分群


针对符合某种特定行为或背景信息的用户,进行特定的优化和分析,将多维度和多指标作为分群条件,有针对性地优化供应链,提升供应链稳定性。


4、漏斗分析


按照已知的转化路径,借助漏斗模型分析总体和每一步的转化情况。例如将漏斗图用于网站关键路径的转化率分析,不仅能显示用户的最终转化率,同时还可以展示每一节点的转化率。


5、留存分析


留存分析是一种用来分析用户参与情况/活跃程度的分析模型,考察进行初始行为的用户中,有多少人会进行后续行为。衡量留存的常见指标有次日留存率、7日留存率、30日留存率等。


6、A/B 测试


A/B测试是为了达到一个目标,采取了两套方案,通过实验观察两组方案的数据效果,判断两组方案的好坏,需要选择合理的分组样本、监测数据指标、事后数据分析和不同方案评估。


7、对比分析


分为横向对比(跟自己比)和纵向对比(跟别人比),常见的对比应用有A/B test,A/B test的关键就是保证两组中只有一个单一变量,其他条件保持一致。


8、交叉分析


交叉分析法就是将对比分析从多个维度进行交叉展现,进行多角度的结合分析,从中发现最为相关的维度来探索数据变化的原因。

阅读全文

与数据分析思维的7个方法相关的资料

热点内容
一个月快速增重20斤的方法 浏览:106
如何降低肌肉兴奋的方法 浏览:331
电脑阅卷快速写字方法 浏览:949
林海真假雅马哈摩托车的鉴别方法 浏览:602
无线光猫连接打印机的方法 浏览:283
人都变瘦的方法是什么呢 浏览:105
医用污水提升泵安装方法 浏览:75
电容电压低的解决方法 浏览:971
如何减脸上的赘肉最有效的方法 浏览:487
哪些方法可以减少铁生锈 浏览:721
如何放松快乐的学习的方法 浏览:829
中网安装方法 浏览:526
早搏的症状和治疗方法 浏览:555
桑葚干食用方法视频 浏览:205
治疗除湿最好方法 浏览:5
教学测量的基本方法 浏览:925
ddp的分配方法包括哪些 浏览:516
设计师面试的问题及解决方法 浏览:742
船橹使用方法 浏览:176
家里有书虱子怎么去除最快方法 浏览:207