❶ 关于表观遗传学的一些常用的研究手段有哪些
表观遗传调控是基因表达调控的重要组成部分,已成为当前研究的热点。目前其研究主要集中在DNA甲基化和组蛋白修饰。针对这两种表观修饰,其研究方法也取得了较大进展,一方面方法的灵敏度和特异性都在不断提高;另一方面表观修饰的检测正在逐步从定性检测向定量分析方向发展,从个别位点向高通量检测发展。此外,新一代测序技术的应用将大大推动表观遗传研究的发展,包括单分子实时测序法、单分子纳米孔测序法等。综述目前常用的DNA甲基化、组蛋白修饰研究方法以及最新的单分子测序技术,并对它们在表观遗传修饰检测中的应用作了简要对比分析。
❷ 什么是染色质免疫共沉淀技术(ChIP)
染色质免疫共沉淀技术是在保持组蛋白和DNA联合的同时,通过运用对应于一个特定组蛋白标记的生物抗体,染色质被切成很小的片断,并沉淀下来的技术。
这项技术主要用来分析目标基因有没有活性、或者分析一种已知蛋白(转录因子)的靶基因有哪些。该技术主要应用于以下几方面:
1.组蛋白修饰酶的抗体作为“生物标记”
2.转录调控分析
3.药物开发研究
4.有丝分裂研究
5.DNA损失与凋亡分析
(2)组蛋白修饰研究方法扩展阅读:
实验步骤:
1、细胞固定
甲醛能有效的使蛋白质-蛋白质,蛋白质-DNA,蛋白质-RNA交联,形成生物复合体,防止细胞内组分的重新分布。甲醛的交联反应是完全可逆的,便于在后续步骤中对DNA和蛋白质进行分析。交联所用的甲醛终浓度为1%,交联时间通常为5分钟到1个小时,具体时间根据实验而定。
值得注意的是,交联时间如果过长,细胞染色质难以用超声波破碎,影响ChIP结果,而且实验材料也容易在离心过程中丢失。交联时间如果过短,则交联不完全,产生假阴性。甲醛的交联反应可被加入的甘氨酸终止。
2、染色质断裂
交联后的染色质可被超声波或Micrococcal Nuclease切成400~600 bp的片段(用琼脂糖凝胶电泳检测),以便暴露目标蛋白,利于抗体识别。超声波是使用机械力断裂染色质,容易引起升温或产生泡沫,这都会引起蛋白质变性,进而影响ChIP的效率。
所以在超声波断裂染色质时,要在冰上进行,且要设计时断时续的超声程序,保证低温。另外,超声探头要尽量深入管中,但不接触管底或侧壁,以免产生泡沫。总超声时间也不要太长,以免蛋白降解。
技术应用:
1、Micrococcal Nuclease可以将染色质切成一到几个核小体,比超声波处理的结果更精致,更均一。另外,酶反应的条件比较温和,对DNA和DNA-蛋白复合物的损伤较小,而且蛋白不易变性。酶处理染色质适用于新鲜的细胞或组织样品和冰冻样品。在研究组蛋白时,经常采用没经过甲醛固定的Native ChIP(N-ChIP)的研究方法。
因为N-ChIP没经过甲醛固定,超声波处理会打断组蛋白和DNA的结合,所以只能选择酶处理染色质的方法。对于甲醛固定的样品,一般选择超声波处理方法。也有研究人员使用酶处理的方法研究甲醛固定较温和的样品。
2、染色质免疫沉淀的DNA适用于多种分析方法。如果目的蛋白的靶序列是已知的或需要验证的,可采用狭缝杂交(Slot blot)的方法,把靶序列特异性探针与染色质免疫沉淀的DNA杂交,来验证目的蛋白与DNA靶序列的特异性结合。
还可以根据靶序列设计引物,用半定量PCR的方法进行测定,或采用Real-time PCR方法进行定量分析。如果目的蛋白的靶序列是未知的或高通量的(high-throughput),可采用Southern杂交。但因为免疫沉淀的DNA量较少,所以在研究时通常要用PCR方法扩增DNA探针,再进行整个基因组扫描。
还可以把沉淀的DNA克隆到载体中,进行测序,寻找该序列附近的开放阅读框,发现新的基因调节序列。
3、目前,随着人类基因组测序工作的基本完成,研究目的蛋白和整个基因组的相互作用逐渐成为研究的热点。由于基因组中的信息量非常大,上述常规方法通常无法满足科研的需要。近年来发展起来的ChIP-chip技术将基因组DNA芯片(chip)技术与染色质免疫沉淀技术(ChIP)相结合,为研究目的蛋白与整个基因组相互作用提供了可能。
ChIP-chip 技术通过标记染色质免疫沉淀富集的DNA片段,和另一个被标记不同探针的对照组样品一起,与DNA芯片杂交,再利用各种生物信息学方法对收集到的信号进行分析,具体的实验步骤请参考Dr. Richard Young在Nature Protocols上的文章。
ChIP-chip技术已经被广泛应用于研究转录因子在整个基因组中的信号网络,染色质修饰机制在基因组中的调控,DNA的复制,修复以及修饰,基因的转录与核运输等诸多方面。
4、染色质免疫沉淀技术还可用于分析两种蛋白共同结合的DNA序列,即ChIP reChIP方法。ChIP reChIP是在第一次ChIP的基础上不解交联,而继续进行另一个目的蛋白的免疫沉淀,从而得到与两种目的蛋白都结合的DNA序列。
值得注意的是,因为通过两次免疫沉淀富集的DNA量比较少,所以在分析时通常要把多次免疫沉淀的DNA浓缩后再进行操作。
5、随着染色质免疫沉淀技术受到广泛的关注,运用该技术发表的文章也逐渐增多,大家越来越多的开始关注如何改进ChIP的方法。Millipore最新推出的Magna ChIP试剂盒,利用磁珠分离DNA-蛋白-抗体复合物,提高了ChIP的效率,简化了操作的过程,缩短了实验的时间,还为同时进行多个目的蛋白的研究提供了可能,是经常使用ChIP技术的研究人员的理想选择。
6、近年来ChIP技术也被用于研究RNA-蛋白的相互作用,其原理与DNA类似,也包括甲醛固定,超声波破细胞,免疫沉淀,交联逆转,RNA纯化和RNA鉴定等步骤。所不同的是,交联逆转只用Proteinase K,要进行RNA纯化和不含RNase的DNase处理,分析时用RT-PCR,芯片杂交要用cDNA芯片等。
❸ 蛋白组学的研究方法
蛋白组学的研究方法如下:
蛋白质组学的发展既是技术所推动的也是受技术限制的。蛋白质组学研究成功与否,很大程度上取决于其技术方法水平的高低。蛋白质研究技术远比基因技术复杂和困难。
不仅氨基酸残基种类远多于核苷酸残基(20/4), 而且蛋白质有着复杂的翻译后修饰,如磷酸化和糖基化等,给分离和分析蛋白质带来很多困难。此外,通过表达载体进行蛋白质的体外扩增和纯化也并非易事,从而难以制备大量的蛋白质。
蛋白质组学的兴起对技术有了新的需求和挑战。蛋白质组的研究实质上是在细胞水岩瞎平上对蛋白质进行大规模的平行分离和分析山枣手,往往要同时处理成千上万种蛋白质。因此,发展高通量、高灵敏度、高准确性的研究技术平台是现在乃至相当一段时间内蛋白质组学研究中的主要任务。
当前在国际蛋白质组研究技术平台的技术基础和发展趋势有以下几个方面: 蛋白质组数据库是蛋白质组研究水平的标志和基逗嫌础。瑞士的SWISS-PROT拥有目前世界上最大,种类最多的蛋白质组数据库。丹麦、英国、美国等也都建立了各具特色的蛋白质组数据库。
生物信息学的发展已给蛋白质组研究提供了更方便有效的计算机分析软件;特别值得注意的是蛋白质质谱鉴定软件和算法发展迅速,如SWISS-PROT、Rockefeller大学、BHS宝护神、UCSF等都有自主的搜索软件和数据管理系统。
最近发展的质谱数据直接搜寻基因组数据库使得质谱数据可直接进行基因注释、判断复杂的拼接方式。随着基因组学的迅速推进,会给蛋白质组研究提供更多更全的数据库。另外,对肽序列标记的从头测序软件也十分引人注目。
❹ 组蛋白修饰的方式
⒈甲基化
组蛋白甲基化是由组蛋白甲基化转移酶(histonemethyl transferase,HMT)完成的。甲基化可发生在组蛋白的赖氨酸和精氨酸残基上,而且赖氨酸残基能够发生单、双、三甲基化,而精氨酸残基能够单、双甲基化,这些不同程度的甲基化极大地增加了组蛋白修饰和调节基因表达的复杂性。甲基化的作用位点在赖氨酸(Lys)、精氨酸(Arg)的侧链N原子上。组蛋白H3的第4、9、27和36位,H4的第20位Lys,H3的第2、l7、26位及H4的第3位Arg都是甲基化的常见位点。研究表明·,组蛋白精氨酸甲基化是一种相对动态的标记,精氨酸甲基化与基因激活相关,而H3和H4精氨酸的甲基化丢失与基因沉默相关。相反,赖氨酸甲基化似乎是基因表达调控中一种较为稳定的标记。例如,H3第4位的赖氨酸残基甲基化与基因激活相关,而第9位和第27位赖氨酸甲基化与基因沉默相关。此外,H4—K20的甲基化与基因沉默相关,H3—K36和H3—K79的甲基化与基因激活有关。但应当注意的是,甲基化个数与基因沉默和激活的程度相关。
⒉乙酰化
组蛋白乙酰化主要发生在H3、H4的N端比较保守的赖氨酸位置上,是由组蛋白乙酰转移酶和组蛋白去乙酰化酶协调进行。组蛋白乙酰化呈多样性,核小体上有多个位点可提供乙酰化位点,但特定基因部位的组蛋白乙酰化和去乙酰化是以一种非随机的、位置特异的方式进行。乙酰化可能通过对组蛋白电荷以及相互作用蛋白的影响,来调节基因转录。早期对染色质及其特征性组分进行归类划分时就有人总结指出:异染色质结构域组蛋白呈低乙酰化,常染色质结构域组蛋白呈高乙酰化。最近有研究发现,某些HAT复合物含有一些常见的转录因子,某些HDAC复合物含有已被证实的阻遏蛋白。这些发现支持了高乙酰化与激活基因表达、低乙酰化与抑制基因表达有关的看法。
⒊组蛋白的其他修饰方式
相对而言,组蛋白的甲基化修饰方式是最稳定的,所以最适合作为稳定的表观遗传信息。而乙酰化修饰具有较高的动态,另外还有其他不稳定的修饰方式,如磷酸化、腺苷酸化、泛素化、ADP核糖基化等等。这些修饰更为灵活的影响染色质的结构与功能,通过多种修饰方式的组合发挥其调控功能。所以有人称这些能被专识别的修饰信息为组蛋白密码。这些组蛋白密码组合变化非常多,因此组蛋白共价修饰可能是更为精细的基因表达方式。
另外,研究发现H2B的泛素化可以影响H3K4和H3K79的甲基化,这也提示了各种修饰间也存在着相互的关联。