㈠ 系统聚类的原理
确定了距离和相似系数后就要进行分类。分类有许多种方法,最常用的一种方法是在样品距离的基础上定义类与类之间的距离。首先将n个样品分成n类,每个样品自成一类,然后每次将具有最小距离的两类合并,合并后重新计算类与类之间的距离,这个过程一直持续到将所有的样品归为一类为止,并把这个过程画成一张聚类图,参照聚类图可方便地进行分类。因为聚类图很像一张系统图,所以这种方法就叫系统聚类法。系统聚类法是在实际中使用最多的一种方法,从上面的分析可以看出,虽然我们已给了计算样品之间距离的方法,但在实际计算过程中还要定义类与类之间的距离。定义类与类之间的距离也有许多方法,不同的方法就产生了不同的系统聚类方法,常用的有如下六种:
(1)最短距离法:类与类之间的距离等于两类最近样品之间的距离;
(2)最长距离法:类与类之间的距离等于两类最远样品之间的距离:
(3)类平均法:类与类之问的距离等于各类元素两两之间的平方距离的平均;
(4)重心法:类与类之间的距离定义为对应这两类重心之间的距离对样品分类来说,每一类的类重心就是该类样品的均值;
(5)中间距离法:最长距离法夸大了类间距离,最短距离法低估了类间距离介于两者问的距离法即为中间距离法,类与类之问的距离既不采用两类之间最近距离。也不采用最远距离,而是采用介于最远和最近之间的距离;
(6)离差平方和法(Ward法):基于方差分析的思想,如果分类正确,同类样品之间的离差平方和应当较小,类与类之间的离差平方和应当较大
㈡ 聚类分析中常见的数据类型有哪些
简单地说,分类(Categorization or Classification)就是按照某种标准给对象贴标签(label),再根据标签来区分归类.
简单地说,聚类是指事先没有“标签”而通过某种成团分析找出事物之间存在聚集性原因的过程.
区别是,分类是事先定义好类别 ,类别数不变 .分类器需要由人工标注的分类训练语料训练得到,属于有指导学习范畴.聚类则没有事先预定的类别,类别数不确定. 聚类不需要人工标注和预先训练分类器,类别在聚类过程中自动生成 .分类适合类别或分类体系已经确定的场合,比如按照国图分类法分类图书;聚类则适合不存在分类体系、类别数不确定的场合,一般作为某些应用的前端,比如多文档文摘、搜索引擎结果后聚类(元搜索)等.
分类的目的是学会一个分类函数或分类模型(也常常称作分类器 ),该模型能把数据库中的数据项映射到给定类别中的某一个类中. 要构造分类器,需要有一个训练样本数据集作为输入.训练集由一组数据库记录或元组构成,每个元组是一个由有关字段(又称属性或特征)值组成的特征向量,此外,训练样本还有一个类别标记.一个具体样本的形式可表示为:(v1,v2,...,vn; c);其中vi表示字段值,c表示类别.分类器的构造方法有统计方法、机器学习方法、神经网络方法等等.
聚类(clustering)是指根据“物以类聚”原理,将本身没有类别的样本聚集成不同的组,这样的一组数据对象的集合叫做簇,并且对每一个这样的簇进行描述的过程.它的目的是使得属于同一个簇的样本之间应该彼此相似,而不同簇的样本应该足够不相似.与分类规则不同,进行聚类前并不知道将要划分成几个组和什么样的组,也不知道根据哪些空间区分规则来定义组.其目的旨在发现空间实体的属性间的函数关系,挖掘的知识用以属性名为变量的数学方程来表示.聚类技术正在蓬勃发展,涉及范围包括数据挖掘、统计学、机器学习、空间数据库技术、生物学以及市场营销等领域,聚类分析已经成为数据挖掘研究领域中一个非常活跃的研究课题.常见的聚类算法包括:K-均值聚类算法、K-中心点聚类算法、CLARANS、 BIRCH、CLIQUE、DBSCAN等.
㈢ 常用的统计分析方法总结(聚类分析、主成分分析、因子分析)
1. 系统聚类法 :由N类--1类
2. 分解法 :由1类---N类
3. K-均值法 :事先在聚类过程中确定在K类,适用于数据量大的数据
4. 有序样品的聚类 :N个样品排序,次序相邻的样品聚成一类
5. 模糊聚类法 :模糊数学的方法,多用于定性变量
6. 加入法 :样品依次加入,全部加入完得到聚类图。
a.夹角余弦
b.相关系数
a.常用的类间距离定义有8种之多,与之相应的 系统聚类法 也有8种,分别为
a. 中间距离法
b. 最短距离法 :类与类之间的距离最近两个样品的距离。
c. 最长距离法 :类与类之间的距离最远两个样品的距离。【先距离最短,后距离最远合并】
d. 类平均法 :两类元素中任两个样品距离的平均。
e. 重心法 :两个重心xp 和xq 的距离。
f. 可变类平均法
e. 离差平方和法(Ward法) : 该方法的基本思想来自于方差分析,如果分类正确,同 类样品的离差平方和应当较小,类与类的离差平方和较大。 具体做法是先将 n 个样品各自成一类,然后每次缩小一类,每 缩小一类,离差平方和就要增大,选择使方差增加最小的两 类合并,直到所有的样品归为一类为止。
a. 最短距离法的主要缺点是它有链接聚合的趋势,容易形 成一个比较大的类,大部分样品都被聚在一类中,所以最短 距离法的聚类效果并不好,实际中不提倡使用。
b. 最长距离法克服了最短距离法链接聚合的缺陷,两类合 并以后与其他类的距离是原来两个类中的距离最大者,加大 了合并后的类与其他类的距离。
a. 定义 :主成分分析(Principal Component Analysis,简记 PCA)是将 多个指标化为少数几个综合指标的一种统计分析方法 ,通常我们把转化成的综合指标称为主成分。
b. 本质:降维
c. 表达 :主成分为原始变量的线性组合
d. 即信息量在空间降维以后信息量没有发生改变,所有主成分的方差之和与原始的方差之和
e. 多个变量之间有一定的相关性,利用原始变量 的线性组合形成几个综合指标(主成分),在保留原始变量主要信息的前提下起到降维与简化问题的作用。
f. 累积贡献率一般是 85% 以上
(1)每一个主成分都是各 原始变量的线性组合
(2)主成分的数目大大少于原始变量的数目
(3)主成分保留了原始变量绝大多数信息
(4)各主成分之间 互不相关
a. 基本目的:用 少数几个综合因子去描述多个随机变量之间的相关关系 。
b. 定义:多个变量————少数综合因子(不存在的因子)
c. 显在变量:原始变量X;潜在变量:因子F
d. X=AF+e【公共因子+特殊因子】
e. 应用: 因子分析主要用于相关性很强的多指标数据的降维处理。
f. 通过研究原始变量相关矩阵内部 的依赖关系,把一些具有错综复杂关系的变量归结为少数几个综合因子的一种多变量统计分析方法。
g. 定义:原始的变量是可观测的显在变量,而 综合 的因子是 不可观测 的 潜在变量 ,称为因子。
i. 根据相关性大小把原始变量分组,使得同组内的变量之间相关性较高,而不同组的变量间的相关性则较低。
ii. 公共因子 :每组变量代表一个基本结构,并用一个不可观测的综合变量表示。
iii. 对于所研究的某一具体问题,原始变量分解成两部分:
i. R 型因子分析——研究变量之间的相关关系
ii. Q 型因子分析——研究样品之间的相关关系
a. 因子载荷 是第i个变量与第j个公共因子的相关系数,绝对值越大,相关的密切程度越高。
a. 变量 Xi 的共同度是因子载荷矩阵的第i行的元素的平方和。记为
b. 所有的公共因子与特殊因子对变量 Xi 的贡献和为1。
a. 确定因子载荷
b. 因子旋转
c. 计算因子得分
a. 寻找简单结构的载荷矩阵:载荷矩阵A的所有元素都接 近0或±1,则模型的公共因子就易于解释。
b. 如果各主因子的典型代表变量不突出,就需要进行旋转使因子载荷矩阵中载荷的绝对值向0和1两个方向分化。
a.意义:对公共因子作正交旋转相当于对载荷矩阵 A 作一正交变换 ,右乘正交矩阵 T ,使 A* = AT 能有更鲜明的实际意义。
b.几何意义:是在 m 维空间上对原因子轴作一刚性旋转。 因子旋转不改变公共因子的共同度,这是因为 A A '=ATT'A'=AA'
c. 旋转方法有:正交旋转和斜交旋转
d. 最普遍的是: 最大方差旋转法
a. 定义:通过坐标变换使各个因子载荷的方差之和最大。
b. 任何一个变量只在一个因子上有高贡献率,而在 其它因子上的载荷几乎为0;
c. 任何一个因子只在少数变量上有高载荷,而在其 它变量上的载荷几乎为0。
思想相同: 降维
前提条件:各变量间必须有 相关性 ,否则各变量之间没有共享信息
㈣ 在进行系统聚类分析时,不同的类间距离计算方法有何区别
聚类分析有两种主要计算方法,分别是凝聚层次聚类(Agglomerative hierarchical method)和K均值聚类(K-Means)。
一、层次聚类
层次聚类又称为系统聚类,首先要定义样本之间的距离关系,距离较近的归为一类,较远的则属于不同的类。可用于定义“距离”的统计量包括了欧氏距离 (euclidean)、马氏距离(manhattan)、 两项距离(binary)、明氏距离(minkowski)。还包括相关系数和夹角余弦。
层次聚类首先将每个样本单独作为一类,然后将不同类之间距离最近的进行合并,合并后重新计算类间距离。这个过程一直持续到将所有样本归为一类为止。在计算类间距离时则有六种不同的方法,分别是最短距离法、最长距离法、类平均法、重心法、中间距离法、离差平方和法。
下面我们用iris数据集来进行聚类分析,在R语言中所用到的函数为hclust。首先提取iris数据中的4个数值变量,然后计算其欧氏距离矩阵。然后将矩阵绘制热图,从图中可以看到颜色越深表示样本间距离越近,大致上可以区分出三到四个区块,其样本之间比较接近。
data=iris[,-5]
dist.e=dist(data,method='euclidean')
heatmap(as.matrix(dist.e),labRow = F, labCol = F)
X
然后使用hclust函数建立聚类模型,结果存在model1变量中,其中ward参数是将类间距离计算方法设置为离差平方和法。使用plot(model1)可以绘制出聚类树图。如果我们希望将类别设为3类,可以使用cutree函数提取每个样本所属的类别。
model1=hclust(dist.e,method='ward')
result=cutree(model1,k=3) 为了显示聚类的效果,我们可以结合多维标度和聚类的结果。先将数据用MDS进行降维,然后以不同的的形状表示原本的分类,用不同的颜色来表示聚类的结果。可以看到setose品种聚类很成功,但有一些virginica品种的花被错误和virginica品种聚类到一起。
㈤ 聚类分析法
聚类分析,亦称群分析或点分析,是研究多要素事物分类问题的数量方法。其基本原理是,根据样本自身的属性,用数学方法按照某些相似性或差异性指标,定量地确定样本之间的亲疏关系,并按亲疏关系的程度对样本进行聚类(徐建华,1994)。
聚类分析方法,应用在地下水中,是在各种指标和质量级别标准约束条件下,通过样品的各项指标监测值综合聚类,以判别地下水质量的级别。常见的聚类分析方法有系统聚类法、模糊聚类法和灰色聚类法等。
(一)系统聚类法
系统聚类法的主要步骤有:数据标准化、相似性统计量计算和聚类。
1.数据标准化
在聚类分析中,聚类要素的选择是十分重要的,它直接影响分类结果的准确性和可靠性。在地下水质量研究中,被聚类的对象常常是多个要素构成的。不同要素的数据差异可能很大,这会对分类结果产生影响。因此当分类要素的对象确定之后,在进行聚类分析之前,首先对聚类要素进行数据标准化处理。
假设把所考虑的水质分析点(G)作为聚类对象(有m个),用i表示(i=1,2,…,m);把影响水质的主要因素作为聚类指标(有n个),用j表示(j=1,2,…,n),它们所对应的要素数据可用表4-3给出。在聚类分析中,聚类要素的数据标准化的方法较多,一般采用标准差法和极差法。
表4-3 聚类对象与要素数据
对于第j个变量进行标准化,就是将xij变换为x′ij。
(1)总和标准化
区域地下水功能可持续性评价理论与方法研究
这种标准化方法所得的新数据x′ij满足
区域地下水功能可持续性评价理论与方法研究
(2)标准差标准化
区域地下水功能可持续性评价理论与方法研究
式中:
由这种标准化方法所得的新数据x′ij,各要素的平均值为0,标准差为1,即有
区域地下水功能可持续性评价理论与方法研究
(3)极差标准化
区域地下水功能可持续性评价理论与方法研究
经过这种标准化所得的新数据,各要素的极大值为1,极小值为0,其余的数值均在[0,1]闭区间内。
上述式中:xij为j变量实测值;xj为j变量的样本平均值;sj为样本标准差。
2.相似性统计量
系统聚类法要求给出一个能反映样品间相似程度的一个数字指标,需要找到能量度相似关系的统计量,这是系统聚类法的关键。
相似性统计量一般使用距离系数和相似系数进行计算。距离系数是把样品看成多维空间的点,用点间的距离来表示研究对象的紧密关系,距离越小,表明关系越密切。相似系数值表明样本和变量间的相似程度。
(1)距离系数
常采用欧几里得绝对距离,其中i样品与j样品距离dij为
区域地下水功能可持续性评价理论与方法研究
dij越小,表示i,j样品越相似。
(2)相似系数
常见的相似系数有夹角余弦和相关系数,计算公式为
1)夹角余弦
区域地下水功能可持续性评价理论与方法研究
在式(4-20)中:-1≤cosθij≤1。
2)相关系数
区域地下水功能可持续性评价理论与方法研究
式中:dij为i样品与j样品的欧几里得距离;cosθij为i样品与j样品的相似系数;rij为i样品与j样品的相关系数;xik为i样品第k个因子的实测值或标准化值;xjk为j样品第k个因子的实测值或标准化值;
3.聚类
在选定相似性统计量之后,根据计算结果构成距离或相似性系数矩阵(n×n),然后通过一定的方法把n个样品组合成不同等级的分类单位,对类进行并类,即将最相似的样品归为一组,然后,把次相似的样品归为分类级别较高的组。聚类主要有直接聚类法、距离聚类法(最短距离聚类法、最远距离聚类法)。
(1)直接聚类法
直接聚类法,是根据距离或相似系数矩阵的结构一次并类得到结果,是一种简便的聚类方法。它首先把各个分类对象单独视为一类,然后根据距离最小或相似系数最大的原则,依次选出一对分类对象,并成新类。如果一对分类对象正好属于已归的两类,则把这两类并为一类。每一次归并,都划去该对象所在的列与列序相同的行。经过n-1次把全部分类对象归为一类,最后根据归并的先后顺序作出聚类分析谱系图。
(2)距离聚类法
距离聚类法包括最短距离聚类法和最远距离聚类法。最短距离聚类法具有空间压缩性,而最远距离聚类法具有空间扩张性。这两种聚类方法关于类之间的距离计算可以用一个统一的公式表示:
区域地下水功能可持续性评价理论与方法研究
当γ=-0.5时,式(4-22)计算类之间的距离最短;当γ=0.5时,式(4-22)计算类之间的距离最远。
最短、最远距离法,是在原来的n×n距离矩阵的非对角元素中找出dpq=min(dij)或dpq=max(dij),把分类对象Gp和Gq归并为一新类Gr,然后按计算公式:
dpq=min(dpk,dqk)(k≠ p,q) (4-23)
dpq=max(dpk,dqk)(k≠ p,q) (4-24)
计算原来各类与新类之间的距离,这样就得到一个新的(n-1)阶的距离矩阵;再从新的距离矩阵中选出最小或最大的dij,把Gi和Gj归并成新类;再计算各类与新类的距离,直至各分类对象被归为一类为止。最后综合整个聚类过程,作出最短距离或最远距离聚类谱系图(图4-1)。
图4-1 地下水质量评价的聚类谱系图
(二)模糊聚类法
模糊聚类法是普通聚类方法的一种拓展,它是在聚类方法中引入模糊概念形成的。该方法评价地下水质量的主要步骤,包括数据标准化、标定和聚类3个方面(付雁鹏等,1987)。
1.数据标准化
在进行聚类过程中,由于所研究的各个变量绝对值不一样,所以直接使用原始数据进行计算就会突出绝对值大的变量,而降低绝对值小的变量作用,特别是在进行模糊聚类分析中,模糊运算要求必须将数据压缩在[0,1]之间。因此,模糊聚类计算的首要工作是解决数据标准化问题。数据标准化的方法见系统聚类分析法。
2.标定与聚类
所谓标定就是计算出被分类对象间的相似系数rij,从而确定论域集U上的模糊相似关系Rij。相似系数的求取,与系统聚类分析法相同。
聚类就是在已建立的模糊关系矩阵Rij上,给出不同的置信水平λ(λ∈[0,1])进行截取,进而得到不同的分类。
聚类方法较多,主要有基于模糊等价关系基础上的聚类与基于最大树的聚类。
(1)模糊等价关系方法
所谓模糊等价关系,是指具有自反性(rii=1)、对称性(rij=rji)与传递性(R·R⊆R)的模糊关系。
基于模糊等价关系的模糊聚类分析方法的基本思想是:由于模糊等价关系R是论域集U与自己的直积U×U上的一个模糊子集,因此可以对R进行分解,当用λ-水平对R作截集时,截得的U×U的普通子集Rλ就是U上的一个普通等价关系,也就是得到了关于U中被分类对象元素的一种。当λ由1下降到0时,所得的分类由细变粗,逐渐归并,从而形成一个动态聚类谱系图(徐建华,1994)。此类分析方法的具体步骤如下。
第一步:模糊相似关系的建立,即计算各分类对象之间相似性统计量。
第二步:将模糊相似关系R改造为模糊等价关系R′。模糊等价关系要求满足自反性、对称性与传递性。一般而言,模糊相似关系满足自反性和对称性,但不满足传递性。因此,需要采用传递闭合的性质将模糊相似关系改造为模糊等价关系。改造的方法是将相似关系R自乘,即
R2=R·R
R4=R2·R2
︙
这样计算下去,直到:R2k=Rk·Rk=Rk,则R′=Rk便是一个模糊等价关系。
第三步:在不同的截集水平下进行聚类。
(2)最大树聚类方法
基于最大树的模糊聚类分析方法的基本思路是:最大树是一个不包含回路的连通图(图4-2);选取λ水平对树枝进行截取,砍去权重低于λ 的枝,形成几个孤立的子树,每一棵子树就是一个类的集合。此类分析方法的具体步骤如下。
图4-2 最大聚类支撑树图
第一步:计算分类对象之间的模糊相似性统计量rij,构建最大树。
以所有被分类的对象为顶点,当两点间rij不等于0时,两点间可以用树干连接,这种连接是按rij从大到小的顺序依次进行的,从而构成最大树。
第二步:由最大树进行聚类分析。
选择某一λ值作截集,将树中小于λ值的树干砍断,使相连的结点构成一类,即子树,当λ由1到0时,所得到的分类由细变粗,各结点所代表的分类对象逐渐归并,从而形成一个动态聚类谱系图。
在聚类方法中,模糊聚类法比普通聚类法有较大的突破,简化了运算过程,使聚类法更易于掌握。
(三)灰色聚类法
灰色聚类是根据不同聚类指标所拥有的白化数,按几个灰类将聚类对象进行归纳,以判断该聚类对象属于哪一类。
灰色聚类应用于地下水水质评价中,是把所考虑的水质分析点作为聚类对象,用i表示(i=1,2,…,n);把影响水质的主要因素作为聚类指标,用j表示(j=1,2,…,m),把水质级别作为聚类灰数(灰类),用k表示(k=1,2,3)即一级、二级、三级3个灰类(罗定贵等,1995)。
灰色聚类的主要步骤:确定聚类白化数、确定各灰色白化函数fjk、求标定聚类权重ηjk、求聚类系数和按最大原则确定聚类对象分类。
1.确定聚类白化数
当各灰类白化数在数量上相差悬殊时,为保证各指标间的可比性与等效性,必须进行白化数的无量纲化处理。即给出第i个聚类对象中第j个聚类指标所拥有的白化数,i=1,2,…,n;j=1,2,…,m。
2.确定各灰色白化函数
建立满足各指标、级别区间为最大白化函数值(等于1),偏离此区间愈远,白化函数愈小(趋于0)的功效函数fij(x)。根据监测值Cki,可在图上(图4-3)解析出相应的白化函数值fjk(Cik),j=1,2,…,m;k=1,2,3。
3.求标定聚类权重
根据式(4-25),计算得出聚类权重ηjk的矩阵(n×m)。
区域地下水功能可持续性评价理论与方法研究
式中:ηjk为第j个指标对第k个灰类的权重;λjk为白化函数的阈值(根据标准浓度而定)。
图4-3 白化函数图
注:图4-3白化函数f(x)∈[0,1],具有下述特点:①平顶部分,表示该量的最佳程度。这部分的值为最佳值,即系数(权)为1,f(x)=max=1(峰值),x∈[x2,x3]。②白化函数是单调变化的,左边部分f(x)=L(x),单调增,x∈(x1,x2],称为白化的左支函数;右边部分f(x)=R(x),单调减,x∈[x3,x4),称为白化的右支函数。③白化函数左右支函数对称。④白化函数,为了简便,一般是直线。⑤白化函数的起点和终点,一般来说是人为凭经验确定。
4.求聚类系数
σik=∑fjk(dij)ηjk (4-26)
式中:σik为第i个聚类对象属于第k个灰类的系数,i=1,2,…,n;k=1,2,3。
5.按最大原则确定聚类对象分类
由σik构造聚类向量矩阵,行向量最大者,确定k样品属于j级对应的级别。
用灰色聚类方法进行地下水水质评价,能最大限度地避免因人为因素而造成的“失真、失效”现象。
聚类方法计算相对复杂,但是计算结果与地下水质量标准级别对应性明显,能够较全面反映地下水质量状况,也是较高层次定量研究地下水质量的重要方法。
㈥ 聚类算法有哪几种
聚类分析计算方法主要有: 层次的方法(hierarchical method)、划分方法(partitioning method)、基于密度的方法(density-based method)、基于网格的方法(grid-based method)、基于模型的方法(model-based method)等。其中,前两种算法是利用统计学定义的距离进行度量。
k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然 后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。一般都采用均方差作为标准测度函数. k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。
其流程如下:
(1)从 n个数据对象任意选择 k 个对象作为初始聚类中心;
(2)根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分;
(3)重新计算每个(有变化)聚类的均值(中心对象);
(4)循环(2)、(3)直到每个聚类不再发生变化为止(标准测量函数收敛)。
优点: 本算法确定的K个划分到达平方误差最小。当聚类是密集的,且类与类之间区别明显时,效果较好。对于处理大数据集,这个算法是相对可伸缩和高效的,计算的复杂度为 O(NKt),其中N是数据对象的数目,t是迭代的次数。
缺点:
1. K 是事先给定的,但非常难以选定;
2. 初始聚类中心的选择对聚类结果有较大的影响。
㈦ SPSS聚类分析 系统聚类分析
SPSS聚类分析:系统聚类分析
一、概念:(分析-分类-系统聚类)
系统聚类法常称为层次聚类法、分层聚类法,也是聚类分析中使用广泛的一种方法。它有两种类型,一是对研究对象本身进行分类,称为Q型聚类;另一是对研究对象的观察指标进行分类,称为R型聚类。同时根据聚类过程不同,又分为分解法和凝聚法。
二、聚类方法(分析-分类-系统聚类-方法)
1、聚类方法。可用的选项有组间联接、组内联接、最近邻元素、最远邻元素、质心聚类法、中位数聚类法和Ward法。◎Between-groupslinkage:组间平均距离法。系统默认选项。合并两类的结果使所有的两类的平均距离最小。◎Within-groups linkage:组内平均距离法。当两类合并为一类后,合并后的类中的所有项之间的平均距离最小。◎Nearestneighbor:最近距离法。采用两类间最近点间的距离代表两 类间的距离。◎Furthest Neighbor:最远距离法。用两类之间最远点的距离代表两类之间的距离。◎Centroidclustering:重心法。定义类与类之间的距离为两类中各 样品的重心之间的距离。◎Medianclustering:中位数法。定义类与类之间的距离为两类中各 样品的中位数之间的距离。◎Ward’s method:最小离差平方和法。聚类中使类内各样品的离差平方和最小,类间的离差平方和尽可能大。
2、度量。允许您指定聚类中使用的距离或相似性测量。选择数据类型以及合适的距离或相似性测量:◎Euclideandistance:欧氏距离。◎SquaredEuclideandistance:欧氏距离平方。两项之间的距离是每个变量值之差的平方和。系统默认项。◎Cosline:余弦相似性测度,计算两个向量间夹角的余弦。◎Pearsonconelation:皮尔逊相关系数。它是线性关系的测度,范围是-1~+1。◎Chebychev:切比雪夫距离。◎Block:曼哈顿(Manhattan)距离,两项之间的距离是每个变量值之差的绝对值总和。◎Minkowski:闵科夫斯基距离。◎Customized:自定义距离。
2.1、区间。可用的选项有Euclidean距离、平方Euclidean距离、余弦、Pearson相关性、Chebychev、块、Minkowski及定制。
2.2、计数。可用的选项有卡方测量和phi平方测量。
2.3、二分类。可用的选项有Euclidean距离、平方Euclidean距离、尺度差分、模式差分、方差、离差、形状、简单匹配、Phi 4点相关性、lambda、Anderberg的D、骰子、Hamann、Jaccard、Kulczynski 1、Kulczynski 2、Lance和Williams、Ochiai、Rogers和Tanimoto、Russel和Rao、Sokal和Sneath 1、Sokal和Sneath 2、Sokal和Sneath3、Sokal和Sneath 4、Sokal和Sneath 5、Yule的Y以及Yule的Q。
3、转换值。允许您在计算近似值之前为个案或值进行数据值标准化(对二分类数据不可用)。可用的标准化方法有z得分、范围1至1、范围0至1、1的最大量级、1的均值和使标准差为1。
4、转换度量。允许您转换距离测量所生成的值。在计算了距离测量之后应用这些转换。可用的选项有绝对值、更改符号和重新调整到0–1范围。
三、统计量(分析-分类-系统聚类-统计量)
1、合并进程表。显示在每个阶段合并的个案或聚类、所合并的个案或聚类之间的距离以及个案(或变量)与聚类相联结时所在的最后一个聚类级别。
2、相似性矩阵。给出各项之间的距离或相似性。
3、聚类成员。显示在合并聚类的一个或多个阶段中,每个个案被分配所属的聚类。可用的选项有单个解和一定范围的解。