1. 常用于蛋白质多肽链N端.C端测定的方法有几种基本原理是什么
(1)N-末端测定 A.二硝基氟苯法(FDNB,DNFB):1945年Sanger提出此方法,是他的重要贡献之一。DNP-氨基酸用有机溶剂抽提后,通过层析位置可鉴定它是何种氨基酸。Sanger用此方法测定了胰岛素的N末端分别为甘氨酸及苯丙氨酸。B.氰酸盐法:1963年Stank及Smyth介绍了一种测定N末端的新方法,步骤如下:由于乙内酰脲氨基酸不带电荷,因此可用离子交换层析法将它与游离氨基酸分开,分离所得的乙内酰脲氨基酸再被盐酸水解,重新生成游离的氨基酸,鉴别此氨基酸即可了解N-末端是何种氨基酸。C.二甲基氨基萘磺酰氯法:1956年Hartley等报告了一种测定N-末端的灵敏方法,采用1-二甲基氨基萘-5-磺酰氯,简称丹磺酰氯。它与游离氨基末端作用,方法类似于Sanger的DNFB法,产物是磺酰胺衍生物。丹磺酰链酸具有强烈的黄色荧光。此法优点为灵敏性较高(比FDNB法提高100倍,样品量小于1毫微克分子)及丹磺酰氨基酸稳定性较高(对酸水解稳定性较DNP氨基酸高),可用纸电泳或聚酰胺薄膜层析鉴定。(2)C-末端分析A.肼解法:这是测定C-末端最常用的方法。将多肽溶于无水肼中,100℃下进行反应,结果羧基末端氨基酸以游离氨基酸状释放,而其余肽链部分与肼生成氨基酸肼。这样羧基末端氨基酸可以采用抽提或离子交换层析的方法将其分出而进行分析。如果羧基末端氨基酸侧链是带有酰胺如天冬酰胺和谷氨酰胺,则肼解时不能产生游离的羧基末端氨基酸。此外肼解时注意避免任何少量的水解,以免释出的氨基酸混淆末端分析。B.羧肽酶水解法:羧肽酶可以专一性地水解羧基末端氨基酸。根据酶解的专一性不同,可区分为羧肽酶A、B和C。应用羧肽酶测定末端时,需要事先进行酶的动力学实验,以便选择合适的酶浓度及反应时间,使释放出的氨基酸主要是C末端氨基酸。
2. 如何预测一段多肽链的氨基酸序列
如何预测一段多肽链的氨基酸序列
有两种方法,一是直接测序列法,常用Edman降解法,在弱碱性条件下多肽连N端氨基酸(阿尔发)与PITC反应,标记为苯氨基硫代甲酰蛋白质。肽链中的第一个肽键变弱,在无水酸的存在下发发生降解,第一个氨基酸(AA1)经过分子重排成为PTH-AA1结合层析技术即可确定氨基酸的性质。C端氨基酸残基分析,可用;羧基肽酶,肼解法;二是串联质谱测定多肽链氨基酸测序。
氨基酸(amino acid):含有氨基和羧基的一类有机化合物的通称。生物功能大分子蛋白质的基本组成单位,是构成动物营养所需蛋白质的基本物质。是含有碱性氨基和酸性羧基的有机化合物。氨基连在α-碳上的为α-氨基酸。组成蛋白质的氨基酸均为α-氨基酸。
3. 多肽和蛋白质类药物的分析方法
1.1生物检定法
由于蛋白多肽类药物多为有生物活性的物质,且生物活性不仅取决于药物的一级结构,与二 、三级结构亦密切相关,故生物检定法是研究该类药物动力学独特而必需的方法。生物检定 法 有两个目的,直接测定体液中药物浓度及鉴定标记药物的生物活性。其方法主要可分为两大 类。
1.1.1在体分析常规的有胰岛素的小鼠血糖法等,另外还有根据各 类蛋白多肽的生物活性 不同而建立的各异的方法,如根据IL-8可将大量中性粒细胞从骨中动员出的性质[1] 而建立 的IL-8动员中性粒细胞家兔体内实验。这类方法最直观地反映生物活性,但涉及整体动物 ,费时费力,灵敏度不高,变异较大。
1.1.2离体组织(细胞)分析如NGF刺激鸡背根神经节增长,缩宫素 的大鼠离体子宫法等。 随着分子生物学的发展,许多特异性强,灵敏度高的依赖细胞株被建立,细胞培养已是最常 用的方法。根据蛋白多肽与细胞相互作用的机理不同,具体的操作亦有多种。如细胞增殖法 (Proliferation assays),快速灵敏,但特异性稍差; 抑制增殖法(Antiproliferation as s ays),检测系统简单,灵敏而专一; 减少细胞损伤法(Cytopathic effect rection assays ) [2],则是依据具有抗病毒活性的药物如干扰素,保护细胞不受病毒损伤, 方法直观 灵敏, 但 可能会受到多肽亚型的干扰。以上的方法都是以细胞数目的增减为量效指标,计数方法有直 接计数法和间接计数法,后者包括MTT法,同位素(3H,14C)掺入法 等。此外,还有根据蛋 白多肽与细胞间接作用进行检测,如与免疫检测联用的抗体诱导法[3],结合酶反 应的酶诱 导分解法[4]等。总的说来,细胞培养法多具有灵敏特异,客观可靠的优点,但其 不足也显 而易见。首先,生物检定法无法定量失去活性的小代谢物,无法示踪它们的体内动态;其次 ,样品多存在于人或动物血清中,血清中内源物质的干扰以及可能存在的内源因子的交叉反 应,影响了方法的专属性;再者,启动生物过程常需阈量细胞因子从而降低了方法的灵敏度 ;依赖株细胞长期培养易发生变异而影响检测的特异性。
1.2免疫学方法
免疫学方法是利用蛋白多肽药物抗原决定簇部位的单克隆或多克隆抗体特异地识别被检药物 ,再以放射计数,比色等方法予以定量,即将特异的抗原抗体反应配以灵敏检测的方法。常 用的方法有三种。
1.2.1放射免疫法(Radioimmunoassays RIA)该法是被测药物(Ag ),标记药物(多为125I-Ag)与抗体(Ab)的竞争性结合反应,方法的特异性 取决于抗原抗体的亲和力及标记药 物的纯度,与生物检定法相比,有简明,易于控制的优点。
1.2.2免疫放射定量法(Immunoradiometrec assays IRMA)该法中 被测药物依然是Ag,它 先与固定相上的Ab形成Ab∶Ag复合物,再与标记抗体125I-Ab结合,形成Ab∶Ag ∶125I-Ab夹心 状。由于Ag需有两个Ab来识别,这就大大增加了方法的特异性,是一灵敏而低变异的方法, 只是对标记抗体的纯度要求很高。
1.2.3酶联免疫法(Enzyme-linked immunosorbent assays ELISA)ELISA的原理与IRMA相 似,只是第二个抗体不是用碘标,而是用可以与底物发生显色反应的酶如HRP来标记,与上 述两法相比,ELISA具有使用寿命长,重复性好,无辐射源的优点,并且已有不少实验证明 ,它与生物检定法具有一定的量效关系[4]及相关性[5],提示它可部分地 反映药物的生物活性。
免疫学方法的缺点在于它测定的是蛋白多肽的免疫活性而不是生物活性;不能同时测定代谢 物,且具有抗原决定簇的代谢片段可能增加结果误差;不同来源的抗体与相同的蛋白多肽反 应可能有较大的差别;还可能受到内源物质的干扰。但免疫法毕竟是一种迅速,灵敏,适于批处理的方法,已有数十种蛋白多肽被开发成能满足药物动力学研究的商品药盒。临床 药动学领域,免疫法已逐渐取代生物检定法。
1.3同位素标记示踪法
放射性同位素标记技术是研究蛋白多肽在生物体内处置的一种最常用的方法。所使用的同位 素有125I, 99mTc, 3H,14C, 35S 等,其中125I因比放射性高,半衰期适宜,标记制备简单 而最为常用。标记方法有两种,一是内标法,即把含有同位素的氨基酸加入生长细胞或合成 体系,该法对生物活性地影响可能较小,但由于制备复杂而限制了其广泛应用;二是外标法 ,常用化学方法如氯胺T或Iodogen法将125I连接于大分子上,因相对简单而被首 选。
同位素法具有简便直观,检测迅速的优点,尤其适用于蛋白多肽药物的组织分布研究,但其 缺点亦显而易见。首先,它不能进行人体药物动力学研究;其次,同位素标记后是否会引起 药物的生物活性及其在生物体内的代谢行为发生变化,一直存在争议.前者可通过调整反应 条件和生物检定法加以改善和验证,基本上可使生物活性无明显变化;后者因药而异则复杂 的多,已有报道认为[6],放射性标记法可干扰表皮生长因子与细胞的相互作用, 从而导致 其体内清除的紊乱;最后,由于蛋白多肽进入体内会被降解代谢,或与其它蛋白质结合,总 的放射性不能代表药物动力学过程,因此如何鉴别样品的原药,降解物及结合物是该法中需 解决的关键问题,常用的方法有两种。
1.3.1SDS-PAGE法根据药物Mr的大小选择不同浓度的凝胶电 泳,通过控制电流等条件使得原 药与其它产物分开,然后通过切割胶条放射计数或放射自显影的方法,来检测电泳放射性图 谱。该法具有较高的分辨率和灵敏度,但电泳过程中,125I-小肽和游离 125I可能扩散至空白凝胶或电解液中,从而使结果可能偏高。
1.3.2HPLC法高效反相色谱(RHPLC),高效排阻液相色谱(SEHPLC )[7],高效离子交换液相色 谱(IEHPLC)分别根据保留时间与蛋白多肽的疏水-亲水性特征,Mr大小,极性的 关系 来分离样品中的物质。它们共同的优点是特异性高,分辨率好,可同时测定原药和降解物, 其中SEHPLC亦可得到结合物的信息,而RHPLC用于蛋白多肽的分离有独特的优越性。但因受 注入样品量的限制,灵敏度,重现性都受影响,且设备昂贵,成本较高。
1.3.3 HPLC-RAD法
高效液相偶联同位素在线检测系统。这种方法将HPLC的高度分析分离行为和同位素的高灵敏度检测结合在一起。使得药物的分析分离更加直观和方便。特别在蛋白质多肽类药物药动学方面体现了其独特的优点。
1.4色谱法
1.4.1HPLC在进行普通药物动力学研究中,HPLC是技术成熟,应用广 泛的分析手段。在蛋 白多肽药物的实验研究或产业化中,HPLC都是主要的分离纯化工具。但鉴于蛋白多肽药物结 构的特殊性,除了一些小分子多肽,如peptichemio[8],加压素的八肽拮抗剂(oc tapeptid e antagonist of vasopressin)[9]可分别直接或经选择性柱反应后,单独 用带荧光检测 器的HPLC进行药动学研究外,HPLC常需进一步改进或与其它更灵敏的检测技术联用方能满足 药动学的需要。除了上述提及的与同位素的联用,还有许多与免疫学方法的联用,如Philli ps[10]采用免疫亲和色谱技术分析人三种不同体液中粒细胞集落刺激因子的浓度; Partilla [11]等认为HPLC与RIA联用可以检测人体液中的神经肽。此外,令人瞩目的还有液 /质在线联用(LC-MS)。
LC-MS将高分离能力,适用范围广泛的色谱分离技术与高灵敏、专属及通用,在研究蛋 白多肽的结构中具有重要价值的质谱法联用起来,成为强有力的分离分析方法。多年来限制 LC-MS技术发展的决定因素是接口问题,由传送带接口(Moving-belt interface),热喷 雾 接口(Thermospray),到最近的电喷雾离子化接口(Electrosptay ionization ESI),联 用技术日趋成熟,尤其适用于生物样品中低浓度(pg/ml)药物及代谢物的测定[12] ,而蛋 白多肽类药物恰有在体内代谢快,浓度低的特点。国外已将用LC-MS于该类药物,药物代 谢 物[13,14]的动力学研究,国内尚处于起步阶段,除了仪器本身价格昂 贵,技术上亦存在 一些问题,如它对样品的纯度要求很高如何将药物从生物体液,尤其是血浆中提取纯化以 减少干扰;如何选择合适的内标以减少系统误差;在将LC-MS用于检测体育禁用肽(HCG,HGH ,EPO,ACTH等)时发现,糖肽难用于质谱分析,因为在质谱条件下,同样的氨基酸序列可产生 多种不同质量的多糖链,而每条链及整个分子都有可以产生质谱信号,这就大大降低了质谱 信号的专属性。尽管LC-MS在蛋白多肽药物的体内药物代谢动力学研究中还存在一 定的难度,但其作为实用性强,前景好的领域已引起人们的广泛关注。
1.4.2高效毛细管电泳(HPCE)HPCE是离子或荷电粒子以电场为驱动 力,在毛细管中按其 浓度和分配系数不同进行高效,快速分离的新技术,它以高分辨率,高灵敏度,分析时间短 ,样品量少及操作简单等诸多优点而成为蛋白多肽生物分子分离分析的重要手段。在临床 上 ,生物体液中低浓度蛋白多肽的分析面临的问题有:蛋白多肽与毛细管壁的相互作用所引起 的迁移时间的改变,这可以通过涂层CE加以改善;由于毛细管很细,管内容积很小,进样量 的不易控制给实验的重复性带来影响,而且很可能无法对低浓度的样品提供足够的灵敏度。 国外根据样品的性质采用不同的预处理,大体上可分为非特异性和高亲和性两种, 将样品加以浓缩,取得了满意的效果[15]。HPCE在检测上的迅速发展与HPLC已有并 驾齐驱之 势,况且鉴于HPCE在样品微量分析的优越性,已有人在药物动力学研究、体内分析中,将微 透析连续采样与之联用[16],这在整个药动学研究中都不失为一有希望的方向。 2结语
由以上可知,现代科学技术的发展给蛋白多肽类药物的研究提供了多样的分析手段,但鉴于 该类药物的特殊性,尚无一种方法能完全满足动力学研究的要求。根据人用药物注册国 际协调会议(ICH)对生物药物临床前安全性评价“在科学基础上的灵活性和具体情节个别 处理”的总则,人们通常将几种方法联合应用,互相补充,才能得到比较可靠的结果。
4. 多肽链的序列分析题怎么做
直接测序列法:常用Edman降解法,在弱碱性条件下多肽连N端氨基酸(阿尔发)与PITC反应,标记为苯氨基硫代甲酰蛋白质。
肽链中的第一个肽键变弱,在无水酸的存在下发发生降解,第一个氨基酸(AA1)经过分子重排成为PTH-AA1结合层析技术即可确定氨基酸的性质。C端氨基酸残基分析,可用;羧基肽酶,肼解法。
多肽的生物合成
同时,游离在细胞质中的转运RNA(tRNA)把它携带的特定氨基酸放在核糖体的mRNA的相应位置上,然后tRNA离开核糖体,再去搬运相应的氨基酸。
这样,在合成开始时,总是携带甲硫氨酸的tRNA先进入核糖体,接着带有第二个氨基酸的tRNA才进入,此时带甲硫氨酸的tRNA把甲硫氨酸卸下,放在mRNA的起始密码位置上,然后自己离开核糖体,甲硫氨酸的-COOH端与第二个氨基酸的-NH2形成肽键。
以上内容参考:网络-多肽链
5. 常用于蛋白质多肽链N端.C端测定的方法有几种
常用于蛋白质多肽链N端测定的方法:
1、二硝基氟苯法(FDNB法)
2、二甲基氨基萘磺酰氯法(DNS-Cl法)
3、异硫氰酸笨酯法(Edman法)
常用于蛋白质多肽链C端测定的方法
1、肼解法
2、还原法
3、羧肽酶法
(5)多肽n端序列分析方法扩展阅读:
多肽合成是一个固相合成顺序,一般从N端即氨基端向C端即羧基端合成。过去的多肽合成是在溶液中进行的称为液相合成法。
液相合成基于将单个N-α保护氨基酸反复加到生长的氨基成份上,合成一步步地进行, 通常从合成链的C端氨基酸开始,接着的单个氨基酸的连接通过用DCC,混合炭酐, 或N-carboxy酐方法实现。
6. 蛋白质多肽链N端测定的方法及基本原理
1 多肽链的拆分。由多条多肽链组成的蛋白质分子,必须先进行拆分。几条多肽链借助非共价键连接在一起,称为寡聚蛋白质,如,血红蛋白为四聚体,烯醇化酶为二聚体;可用8mol/L尿素或6mol/L盐酸胍处理,即可分开多肽链(亚基).
2 测定蛋白质分子中多肽链的数目。通过测定末端氨基酸残基的摩尔数与蛋白质分子量之间的关系,即可确定多肽链的数目。
3 二硫键的断裂。几条多肽链通过二硫键交联在一起,可在8mol/L尿素或6mol/L盐酸胍存在下,用过量的-巯基乙醇处理,使二硫键还原为巯基,然后用烷基化试剂保护生成的巯基,以防止它重新被氧化。
二硫键的切割与保护(元素后数字为下标)
a 过甲酸〔performic acid〕 不可逆
-CH2SO3H
b、还原+氧化 不可逆
[ 巯基乙醇,DTT ] + 碘乙酸等
-S-CH2-COOH
c、亚硫酸分解〔Sulfitolysis〕 可逆
-R1-S-S-R2 + HSO3-
R1-S- + R2-S-SOH3
可以通过加入盐酸胍的方法解离多肽链之间的非共价力;应用过甲酸氧化法或巯基还原法拆分多肽链间的二硫键。
巯基(-SH)的保护4 测定每条多肽链的氨基酸组成,并计算出氨基酸成分的分子比(如右图)
5 分析多肽链的N-末端和C-末端
多肽链端基氨基酸分为两类:N-端氨基酸(amino-terminal)和C-端氨基酸(Carboxyl-terminal) 。在肽链氨基酸顺序分析中,最重要的是N-端氨基酸分析法。N末端分析法(Sanger法;Edman法;DNS-Cl;酶降解法),C末端分析法(肼解法;酶降解法;硼氢化锂法)。
6 多肽链断裂成多个肽段。可采用两种或多种不同的断裂方法将多肽样品断裂成两套或多套肽段或肽碎片,并将其分离开来。
7 测定每个肽段的氨基酸顺序
8 确定肽段在多肽链中的次序。
利用两套或多套肽段的氨基酸顺序彼此间的交错重叠,拼凑出整条多肽链的氨基酸顺序。
9 确定原多肽链中二硫键的位置
一般采用胃蛋白酶处理没有断开二硫键的多肽链,再利用双向电泳技术分离出各个肽段,用过甲酸处理后,将可能含有二硫键的肽段进行组成及顺序分析,然后同其它方法分析的肽段进行比较,确定二硫键的位置。