导航:首页 > 研究方法 > 统计方差分析方法

统计方差分析方法

发布时间:2022-02-04 06:40:13

㈠ 统计学中方差分析和假设检验有什么区别

方差分析与假设检验的区别:

1、运用领域不同,假设检验是推论统计中用于检验统计假设的一种方法。方差分析用于两个及两个以上样本均数差别的显着性检验。

2、基本思想不同。假设检验的基本思想是小概率反证法思想。方差分析的基本思想是通过分析研究不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。

方差分析技巧:

方差分析用于定类数据(X)与定量数据(Y)之间的差异分析,例如研究三组学生(X)的智商平均值(Y)是否有显着差异。其中X的组别数量至少为2,也可以分析三个或三个以上组别的数据。在分析前首先需要按正确格式录入、上传才能得到有效的分析结果。

㈡ 统计学的方差分析表中,p值怎么计算呀有没有公式或者什么

P值的计算公式:

=2[1-Φ(z0)] 当被测假设H1为 p不等于p0时;

=1-Φ(z0) 当被测假设H1为 p大于p0时;

=Φ(z0) 当被测假设H1为 p小于p0时;

其中,Φ(z0)要查表得到。

z0=(x-n*p0)/(根号下(np0(1-p0)))

最后,当P值小于某个显着参数的时候我们就可以否定假设。反之,则不能否定假设。

实验条件,即不同的处理造成的差异,称为组间差异。用变量在各组的均值与总均值之偏差平方和的总和表示,记作SSb,组间自由度dfb。

(2)统计方差分析方法扩展阅读:

如测量误差造成的差异或个体间的差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示, 记作SSw,组内自由度dfw。

总偏差平方和 SSt = SSb + SSw。

组内SSw、组间SSb除以各自的自由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MSw和MSb,一种情况是处理没有作用,即各组样本均来自同一总体,MSb/MSw≈1。

另一种情况是处理确实有作用,组间均方是由于误差与不同处理共同导致的结果,即各样本来自不同总体。那么,MSb>>MSw(远远大于)。

当控制变量为定序变量时,趋势检验能够分析随着控制变量水平的变化,观测变量值变化的总体趋势是怎样的,是呈现线性变化趋势,还是呈二次、三次等多项式变化。通过趋势检验,能够帮助人们从另一个角度把握控制变量不同水平对观测变量总体作用的程度。

㈢ 方差分析法的方法

通常用方差(variance)表示偏差程度的量,先求某一群体的平均值与实际值差数的平方和,再用自由度除平方和所得之数即为方差(普通自由度为实测值的总数减1)。组群间的方差除以误差的方差称方差比,以发明者R.A.Fisher的第一字母F表示。将F值查对F分布表,即可判明实验中组群之差是仅仅偶然性的原因,还是很难用偶然性来解释。换言之,即判明实验所得之差数在统计学上是否显着。方差分析也适用于包含多因子的试验,处理方法也有多种。在根据试验设计所进行的实验中,方差分析法尤为有效。
方差法计算原则:
一种表达值精确度的常用方法是表示真值在一定概率下所处的界限,平均值的界限给出:数据结果如果有两组试验结果,表示对两种材料进行的同样试验,了解这两组结果的平均值究竟有无明显差别,所算出的这一参数就是最小显着性之差,假如这两个平均值之间的差别超出这一参数,那么这两组数据来自同一总体的机会就会很小,也就是说这两者的总体很可能是不同的,最小显着差由下式计算,若每组所含的数据个数相同,如果这一比值大于从分布表查得的相应的值,那么这两个标准偏差在一定概率水平上是显着不同的,这种显着性检验仅在数据分布呈正态分布或接近于正态分布时才是有效的,采用合并标准偏差检验平均值显着性差异应严格限制在比值检验标准偏差有明显差异时使用,有多种原因会造成试验结果的波动性,因此最好是经常测定总变动性中的每一变动源所占的比例,方差分析就是用于评价总变动性来自每一变动源中各组分显着性一项技术,是以构成总方差的各独立因素方差而不是标准的总和等于总方差这一基本事实为基础的,其总的原则是鉴别试验变动性的可能来源,编制方差分析表,以得出每一组分平均值偏差的平方和,以及相应的自由度数值的均方值,方差的数据主要与加工性能以及损耗等多种因素有关。

㈣ 在教学中如何应用方差分析方法进行数据统计分析的研究

方差分析即显着性检验的一种
具体做法是用组内差异和组间差异比较 得出影响因素的影响力大小和显着与否

㈤ 方差分析的分类举例

1、单因素方差分析:

是用来研究一个控制变量的不同水平是否对观测变量产生了显着影响。这里,由于仅研究单个因素对观测变量的影响,因此称为单因素方差分析。

例如,分析不同施肥量是否给农作物产量带来显着影响,考察地区差异是否影响妇女的生育率,研究学历对工资收入的影响等。这些问题都可以通过单因素方差分析得到答案。

单因素方差分析的第一步是明确观测变量和控制变量。例如,上述问题中的观测变量分别是农作物产量、妇女生育率、工资收入;控制变量分别为施肥量、地区、学历。

单因素方差分析的第二步是剖析观测变量的方差。方差分析认为:观测变量值的变动会受控制变量和随机变量两方面的影响。据此,单因素方差分析将观测变量总的离差平方和分解为组间离差平方和和组内离差平方和两部分,用数学形式表述为:SST=SSA+SSE。

单因素方差分析的第三步是通过比较观测变量总离差平方和各部分所占的比例,推断控制变量是否给观测变量带来了显着影响。

单因素方差分析基本步骤:

提出原假设;选择检验统计量;计算检验统计量的观测值和概率P值;给定显着性水平,并作出决策。

2、双因素方差分析

双因素方差分析(Double factor variance analysis) 有两种类型:一个是无交互作用的双因素方差分析,它假定因素A和因素B的效应之间是相互独立的,不存在相互关系;另一个是有交互作用的双因素方差分析,它假定因素A和因素B的结合会产生出一种新的效应。

例如,若假定不同地区的消费者对某种品牌有与其他地区消费者不同的特殊偏爱,这就是两个因素结合后产生的新效应,属于有交互作用的背景;否则,就是无交互作用的背景。这里介绍无交互作用的双因素方差分析。

双因素方差分析的基本思想:通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。

3、多因素方差分析

多因素方差分析实质也采用了统计推断的方法,其基本步骤与假设检验完全一致 。

(1)提出原假设

多因素方差分析的第一步是明确观测变量和若干个控制变量,并在此基础上提出原假设。

多因素方差分析的原假设是:各控制变量不同水平下观测变量各总体的均值无显着性差异,控制变量各效应和交互作用效应同时为0,即控制变量和它们的交互作用没有对观测变量产生显着影响。

(2)观测变量方差的分解

在多因素方差分析中,观测变量取值的变动会受到三个方面的影响:第一,控制变量独立作用的影响,指单个控制变量独立作用对观测变量的影响;第二,控制变量交互作用的影响,指多个控制变量相互搭配后对观测变量产生的影响;

第三,随机因素的影响,主要指抽样误差带来的影响。基于上述原则,多因素方差分析将观测变量的总变差分解为(以两个控制变量为例):SST=SSA+SSB+SSAB+SSE。

其中,SST为观测变量的总变差;SSA、SSB分别为控制变量A、B独立作用引起的变差;SSAB为控制变量A、B两两交互作用引起的变差;SSE为随机因素引起的变差。通常称SSA+SSB+SSAB为主效应,SSAB为N向(N-WAY)交互效应,SSE为剩余。

(3)比较观测变量总离差平方和各部分所占的比例,计算检验统计量的观测值和相伴概率P值

多因素方差分析的第三步是通过比较观测变量总离差平方和各部分所占的比例,推断控制变量以及控制变量的交互作用是否给观测变量带来了显着影响。

容易理解,在观测变量总离差平方和中,如果SSA所占比例较大,则说明控制变量A是引起观测变量变动的主要因素之一,观测变量的变动可以部分地由控制变量A来解释;反之,如果SSA所占比例较小,则说明控制变量A不是引起观测变量变动的主要因素,观测变量的变动无法通过控制变量A来解释。对SSB和SSAB同理。

在多因素方差分析中,控制变量可以进一步划分为固定效应和随机效应两种类型。其中,固定效应通常指控制变量的各个水平是可以严格控制的,它们给观测变量带来的影响是固定的;随机效应是指控制变量的各个水平无法作严格的控制,它们给观测变量带来的影响是随机的。一般来说,区分固定效应和随机效应比较困难。

由于这两种效应的存在,多因素方差分析模型也有固定效应模型和随机效应模型之分。这两种模型分解观测变量变差的方式是完全相同的,主要差别体现在检验统计量的构造方面。多因素方差分析采用的检验统计量仍为F统计量。如果有A、B两个控制变量,通常对应三个F检验统计量。

4.给定显着性水平,并做出决策

给定显着性水平,与检验统计量的相伴概率P值作比较。在固定效应模式中,如果FA的相伴概率P值小于或等于给定的显着性水平,则应拒绝原假设,认为控制变量A不同水平下观测变量各总体均值有显着差异,控制变量A的各个效应不同时为0,控制变量A的不同水平对观测变量产生了显着影响;

相反,如果FA的相伴概率P值大于给定的显着性水平,则不应拒绝原假设,认为控制变量A不同水平下观测变量各总体均值无显着差异,控制变量A的各个效应同时为0,控制变量A的不同水平对观测变量没有产生显着影响。对控制变量B和A、B交互作用的推断同理。在随机模型中,应首先对A、B的交互作用是否显着进行推断,然后再分别依次对A、B的效应进行检验。

㈥ 方差分析是用于研究哪种数据的统计方法

方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。通俗点讲,就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)。 在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定 。

㈦ 在统计学中,方差分析表如何填

方差分析表填的方法如下:

表格中通常列出方差来源、变差平方和、自由度、方差估计值、方差比、统计量F临界值、显着性检验标记符等,只要通过实验测出以上数据即可填表。

自由度,在统计学中指的是计算某一统计量时,取值不受限制的变量个数。

通常df=n-k。其中n为样本含量,k为被限制的条件数或变量个数,或计算某一统计量时用到其它独立统计量的个数。自由度通常用于抽样分布中。

方差(variance),在概率论和统计方差衡量随机变量或一组数据是离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。

统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。



(7)统计方差分析方法扩展阅读:

为了便于进行数据分析和统计判断,按照方差分析的过程,将有关步骤的计算数据。

例如差异来源、离差平方和、自由度、均方和F检验值等指标数值逐一列出,以方便检查和分析的统计分析表。

一般的统计软件给出的方差分析表的形式。运用Excel的“分析工具库”中的“方差分析:单因素方差分析”工具,进行方差分析,由Excel输出的“单因素方差分析表”。

㈧ 应用方差分析方法进行数据统计分析的研究

数据你要自己找,我替别人做这类的数据分析蛮多的

㈨ 什么是方差分析,简述方差分析的基本步骤

方差分析是检验多个总体均值是否相等的统计方法.它是通过检验各总体的均值是否相等来判断分类型自变量对数值型自变量是否有显着影响.
单因素方差分析基本思想:数据的误差即总误差平方和分为组间平方和组内平方和,组内误差只包含随机误差.组间误差包含随机误差和系统误差,系统误差即为因素不同水平造成的误差,如果因素的不同水平对数据没有影响,系统误差为0,组间误差与组内误差经过自由度平均后的数值相比接近于1,反之,如果因素的不同水平对数据有影响,这个比值就会大于1,当它大到某种程度时,就可以说不同水平之间存在着显着差异,也就是自变量对因变量有显着影响

㈩ 方差分析 比较差异用什么统计学方法

单因素方差分析
方差分析前提:不同水平下,各总体均值服从方差相同的正态分布。
方差齐性检验:采用方差同质性检验方法(Homogeneity of variance)
在spss中打开你要处理的数据,在菜单栏上执行:analyse-compare means--one-way anova,
打开单因素方差分析对话框
在这个对话框中,将因变量放到dependent list中,将自变量放到factor中,点击post hoc,选择snk和lsd,返回确认ok
统计专业研究生工作室原创,请勿复杂粘贴

阅读全文

与统计方差分析方法相关的资料

热点内容
简述奥尔夫音乐教学方法 浏览:990
医院绩效管理的常用方法 浏览:115
用空气炸锅做戚风蛋糕简单方法 浏览:709
怎么做剪纸画的方法 浏览:802
布鲁氏菌治疗方法 浏览:409
初三数学复习方法和技巧视频 浏览:523
bmi检验用什么检验方法 浏览:730
血液中元素分析检测方法 浏览:404
论文的研究方法主要在哪里 浏览:600
教学方法实物 浏览:953
42除4计算方法 浏览:400
茶盘的保养方法视频 浏览:921
飘窗玻璃卷帘安装方法 浏览:481
幼儿肾积水治疗方法 浏览:210
显示主题栏在哪里设置方法 浏览:803
减肥方法快速减肥 浏览:658
定制衣柜侧板的处理方法图片 浏览:115
麻疹咽拭子检测方法 浏览:63
格林巴利的治疗方法 浏览:559
行政公文常用调查方法 浏览:892