导航:首页 > 研究方法 > 颗粒形貌结构分析方法

颗粒形貌结构分析方法

发布时间:2023-10-18 17:35:52

① 目前常采的粒度分析方法哪些

测粒度分布的有:筛分法、沉降法、激光法、电感法(库尔特)。
测比表面积的有:空气透过法(没淘汰)、气体吸附法。
直观的有:(电子)显微镜法、全息照相法。

显微镜法(Micros)
SEM、TEM;1nm~5μm范围。
适合纳米材料的粒度大小和形貌分析。

沉降法(Sedimentation Size Analysis) 沉降法的原理是基于颗粒在悬浮体系时,颗粒本身重力(或所受离心力)、所受浮力和黏滞阻力三者平衡,并且黏滞力服从斯托克斯定律来实施测定的,此时颗粒在悬浮体系中以恒定速度沉降,且沉降速度与粒度大小的平方成正比。10nm~20μm的颗粒。

光散射法(Light Scattering)
激光衍射式粒度仪仅对粒度在5μm以上的样品分析较准确,而动态光散射粒度仪则对粒度在5μm以下的纳米样品分析准确。

激光光散射法可以测量20nm-3500μm的粒度分布,获得的是等效球体积分布,测量准确,速度快,代表性强,重复性好,适合混合物料的测量。
利用光子相干光谱方法可以测量1nm-3000nm范围的粒度分布,特别适合超细纳米材料的粒度分析研究。测量体积分布,准确性高,测量速度快,动态范围宽,可以研究分散体系的稳定性。其缺点是不适用于粒度分布宽的样品测定。
光散射粒度测试方法的特点
测量范围广,现在最先进的激光光散射粒度测试仪可以测量1nm~3000μm,基本满足了超细粉体技术的要
光散射力度测试远离示意图
求。
测定速度快,自动化程度高,操作简单。一般只需1~1.5min。
测量准确,重现性好。
可以获得粒度分布。

激光相干光谱粒度分析法
通过光子相关光谱(PCS)法,可以测量粒子的迁移速率。而液体中的纳米颗粒以布朗运动为主,其运动速度取决于粒径,温度和粘度等因素。在恒定的温度和粘度条件下,通过光子相关光谱(PCS)法测定颗粒的迁移速率就可以获得相应的颗粒粒度分布。
光子相关光谱(pcs)技术能够测量粒度度为纳米量级的悬浮物粒子,它在纳米材料,生物工程、药物学以及微生物领域有广泛的应用前景。

优点是可以提供颗粒大小,分布以及形状的数据。此外,一般测量颗粒的大小可以从1纳米到几个微米数量级。
并且给的是颗粒图像的直观数据,容易理解。但其缺点是样品制备过程会对结果产生严重影响,如样品制备的分散性,直接会影响电镜观察质量和分析结果。电镜取样量少,会产生取样过程的非代表性。
适合电镜法粒度分析的仪器主要有扫描电镜和透射电镜。普通扫描电镜的颗粒分辨率一般在6nm左右,场发射扫描电镜的分辨率可以达到0.5nm。
扫描电镜对纳米粉体样品可以进行溶液分散法制样,也可以直接进行干粉制样。对样品制备的要求比较低,但由于电镜对样品有求有一定的导电性能,因此,对于非导电性样品需要进行表面蒸镀导电层如表面蒸金,蒸碳等。一般颗粒在10纳米以下的样品比较不能蒸金,因为金颗粒的大小在8纳米左右,会产生干扰的,应采取蒸碳方式。
扫描电镜有很大的扫描范围,原则上从1nm到mm量级均可以用扫描电镜进行粒度分析。而对于透射电镜,由于需要电子束透过样品,因此,适用的粒度分析范围在1-300nm之间。
对于电镜法粒度分析还可以和电镜的其他技术连用,可以实现对颗粒成份和晶体结构的测定,这是其他粒度分析法不能实现的。

② 请专家帮忙翻译一下,谢谢!

Size advantages and disadvantages compared with the detection method
Powder size distribution measurement methods after more than 100 years of development, at least according to the Census and Statistics has developed more than 100 species, but with the development of science and technology, some methods to be phased out, some methods have been improved and development (such as laser scattering, dynamic Light scattering, etc.), and proction, scientific research has been widely used, now commonly used measurement methods screening method, micro-imaging method, light through the settlement method, laser light scattering (diffraction) and so few, the following simple Introction of several commonly used measurement of particle size.
▲Screening Method
Is a long history of the determination of particle size, screen size measurement method is to use a different standard sieve size screen to screen for powder, and then each of the samples were screened for weight and then get Dimensional quality of the particle size distribution data, and the results calculated by the distribution of such Dv50 and other parameters. Ao to screen measurement is characterized by low-cost and easy to operate, but there is a difference, such as repetitive, surveying a long time, not less 5um particles measured, and other shortcomings.
▲Micro-image analysis
The use of optical or electron micros and computer image recognition technology for particle size and size distribution, particle shape measurement, analysis. This approach not only to measure particle size distribution and be able to directly observe the shape of particles, is the only visual of a visual test, which is also characteristic of other particle size measuring instruments are not available. This approach has the advantage of an intuitive, simple, low cost, e to the shortcomings of the small amount of sampling, in order to make the results representative, the need to increase the number of particles under test (measuring particles is generally believed that the number should be 1,000 or more) This has been stingy corresponding measurements, and test the strength of the staff, but to be able to shape particles (such as aspect ratio, etc.) to measure, there is also widely used.
▲Light through sedimentation
Settlement Act size of the test theory is based on Stockton Secretary Beer's law and the law. The former are given particle size and velocity relationship, which stated size and weight of light transmission. Can be simply described as: settlement in the fluid, the same proportion of the number of particles, the same time, begin to decline from the same location, different diameter of the particles reach the area of measuring time is different, according to the measurement of particles to reach the area, And the strength of the light, we can calculate the size of the particles, and the corresponding size of the particles in particle occupies a group of proportion. The principle of measuring the use of such devices have a longer history of use, but with the technology and means of measuring progress and the shortcomings of this method has become more prominent, such as the measurement for a long time and repeatability error, and so large.
▲Laser Scattering
Particle measuring instruments is rich and the Philippine Long diffraction (Fraunhofer diffraction) and Mie scattering (Mie scattering) as a theoretical basis. This simple theory can be understood as a straight line along the transmission of parallel laser beams, in the dissemination of particles encountered in the block, changed the direction of the spread (that is, the occurrence of the phenomenon of diffraction and scattering), and large particles so that the laser to change the perspective of small, Small particles big change. (In fact e to the particles block the view of the infinite distance in the formation of a Airy, Airy 87% of the energy-concentrated in the center ring, and the larger the diameter of particles, the smaller the center ring, the smaller the particle diameter center-ring The greater). If you can receive a different perspective on energy, corresponding to the point of view, corresponding to the diameter of its light energy is a collection of particles occurred diffraction (scattering) caused by, and other relevant point of view of the light energy is strong or weak response corresponds to the diameter of particles in the The entire collection of particles in the proportion of possession.
▲Laser particle size measuring instruments relative to the size of settlement through optical measuring instruments have many advantages:
1.Principles of-the-art, and because there is no need to test the process of pre-determined parameters (for example, the proportion of samples, medium viscosity, temperature, etc.), and in the process of measuring changes in the conditions at any time, the measurements accurate and reliable.
2.Measuring speed test of time has nothing to do with the size distribution of samples, typical testing process in general less than a minute;
3.Each test, a number of samples to be scanned, reprocible results;
4.The type of sampling methods, applicable to various types of samples.

③ 对材料进行组织形貌分析有哪些方法

对材料进行组织形貌分析的方法有:光学显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、扫描隧道显微镜(STM)。材料的形貌是材料分析的重要组成部分,材料的很多物理化学性能是由其形貌特征所决定的。
显微镜是由一个透镜或几个透镜的组合构成的一种光学仪器,是人类进入原子时代的标志。主要用于放大微小物体成为人的肉眼所能看到的仪器。显微镜分光学显微镜和电子显微镜:光学显微镜是在1590年由荷兰的詹森所首创。现在的光学显微镜可把物体放大1600倍,分辨的最小极限达波长的1/2,国内显微镜机械筒长度一般是160毫米。其中对显微镜研制,微生物学有巨大贡献的人为列文虎克,荷兰籍人。

④ 材料表征方法有哪些

材料的表征方法有纳米粒子的XRD表征、纳米粒子透射电子显微镜及光谱分析、纳米粒子的扫描透射电子显微术、纳米团簇的扫描探针显微术、纳米材料光谱学和自组装纳米结构材料的核磁共振表征。

常用材料表征手段

1. 微观形貌

形貌分析的主要内容是分析材料的几何形貌,材料的颗粒度,及颗粒度的分布以及形貌微区的成分和物相结构等方面。

形貌分析方法主要有:扫描电子显微镜 SEM、透射电子显微镜 TEM、原子力显微镜等等。

如下图所示

3. 成分分析

体相元素成分分析是指体相元素组成及其杂质成分的分析,其方法包括原子吸收、原子发射ICP、质谱以及X射线荧光与X射线衍射分析方法;其中前三种分析方法需要对样品进行溶解后再进行测定,因此属于破坏性样品分析方法;而X射线荧光与衍射分析方法可以直接对固体样品进行测定因此又称为非破坏性元素分析方法。

⑤ (三)颗粒的组构方式

组构是指沉积岩中颗粒的排列方式、充填方式以及颗粒之间的接触关系(图3-3),是沉积物结构的一个重要方面。主要包括3种类型:

图3-3 颗粒的组构,示颗粒填集、接触、定向蔽悔知性及颗粒-杂基之间的关系

(据Tucker,1991)

1.定向结构

定向结构是指由沉积作用造成的砂和砾石在同一方向沿长轴方向定向排列的一种组构。如水流作用造成沉积砾石呈叠瓦状相互叠置,并向上游方向倾斜,因此,可据此判断古流向。

2.颗粒的胶结类型和支撑性质

在碎屑岩中,胶结物或填隙物的分布状况及其与碎屑颗粒的接触关系称为胶结类型。

决定碎屑岩胶结类型的因素,一是碎屑颗粒与胶结物或填隙物的相对数量,二是碎屑颗粒之间的接触关系。据此,可将胶结类型划分为以下几种(图3-4)。

图3-4 颗粒接触类型与胶结类型的关系

(据刘宝珺等,1980)

(1)基底胶结与杂基支撑:填隙物含量较多,碎屑颗粒在其中互不接触呈漂浮状,填隙物主要为原杂基(或由之转变成的正杂基),这种胶结类型一般代表着高密度流快速堆积的特征。由基底式胶结形成的结构称为杂基支撑结构,形成于沉积同生期,前搏受压实作用较弱。

(2)孔隙胶结与颗粒支撑:岩石中胶结物含量少,碎屑颗粒之间多呈点接触,颗粒间成支架状,称为颗粒支撑结构。胶结物只充填在碎屑颗粒之间的孔隙中,多为成岩期或后生期的化学沉淀产物。

(3)接触胶结与颗粒支撑:颗粒之间呈点接触或线接触,胶结物含量很少,分布于碎屑颗粒相互接触的地方,亦称为颗粒支撑结构。它可能是干旱气候带的砂层,由毛细管作用,溶宏消液沿颗粒间细缝流动并沉淀形成的,或者是原来的孔隙式胶结物经地下水淋滤改造而成的。

(4)镶嵌胶结:在成岩期的压固作用下,特别是当压溶作用明显时,砂质沉积物中的碎屑颗粒会更紧密地接触,颗粒之间由点接触发展为线接触、凹凸接触,甚至形成缝合状接触。这种颗粒直接接触构成的镶嵌式胶结,有时不能将碎屑与其硅质胶结物区分开,看起来像是没有胶结物,因此,也可称之为无胶结物式胶结。

⑥ 矿物微形貌研究方法

矿物形貌研究是借以探索矿物生长机制和生成历史的重要内容,通常用直接观察的方法进行。较大颗粒的宏观矿物形态只需肉眼观察或借助实体显微镜即可,更深入的微观形貌观察必须借助高倍显微镜进行。根据工作原理,可将矿物形貌观察显微镜分为光学和电子两大类。

一、光学显微镜

光学显微技术是在微米尺度上观察矿物形貌及结构的较普遍的方法,有实体、偏光和反光3种类型。

实体显微镜能较为直观地放大物体,放大倍数不高,一般为几倍至100倍,可以观察矿物形态、解理以及表面较明显的微形貌结构。

偏光显微镜能放大数十倍到数百倍,可以观察矿物的双晶、解理、块状或隐晶集合体形态等特征。

图24-1 透射相衬显微镜的光学系统示意图

图24-2 扫描电子显微镜结构示意图

反光显微镜通常用于不透明矿物的集合体形态的观察。

二、相衬显微镜

相衬显微镜能够观察到矿物表面纳米(nm)尺度的分子层厚度,对推动晶体表面微形貌的研究起了极其重要的促进作用。

相衬显微镜的光学系统能将入射光产生的位相差转换为振幅(或强度)差。前者肉眼无法辨认,经转换后就能直接观察位相差所反映的物体表面(反射)或内部(透射)的结构细节。

相衬显微镜的结构与普通偏光显微镜相似,所不同的是在聚光镜下方插入了一个环形空圈板;另有几个安装有位相板的相衬物镜及同轴调整望远镜3个特殊部分。环形空圈板的作用在于提高分辨率;位相板(即位相过滤器)的作用是加大图像的衬比度。相衬显微镜有透射式与反射式两种类型(透射式的光学系统见图24-1),前者用于观察薄片中矿物内部显微构造,后者用于观察晶体表面。借助相衬显微镜,能清晰看到微米(μm)级、具立体感的微观形貌,对探索矿物的结晶状态和生长机制,提供了许多用常规方法不能获得的丰富信息。

三、电子显微镜

电子显微镜包括透射电镜(TEM)和扫描电镜(SEM),是将电子束激发样品微区产生的信号收集、放大并转换成各种图像、图谱或强度数据,从而直接给出亚微观尺度的样品形貌、结构和成分的仪器。

透射电镜的结构主要由电子枪、电磁透镜(聚光系统)、成像系统、真空系统、显像部分、电源部分及各种附件组成。结构上它与普通光学显微镜相似,不同的是,光学显微镜用可见光作光源,在空气介质中工作,聚光系统是玻璃透镜,最高放大倍数为1000 倍左右,有效分辨率为0.2μm;而透射电镜则用电子束作射线源,由于电子波长很短,其分辨本领很高,为减少运动电子能量损失,在真空下工作,并采用双电磁透镜聚焦,以提高电子束强度和物镜成像后的亮度,放大倍数由几百倍到200万倍,分辨率达0.7~1nm,可观察晶格像、位错、晶体缺陷等微细结构的变化。透射电镜的实验技术,要求制备极薄(100~200nm)的透明样品,目前主要通过离子减薄制样技术获得。

扫描电镜是用细聚焦电子束在试样表面扫描时激发产生二次电子(辅有背散射电子、吸收电子和特征X射线),经收集、处理、放大后成二次电子像,从而获得样品表面的三维立体图像(图24-2)。扫描电镜主要功能是进行高分辨的微形貌观察。

目前扫描电镜普遍的分辨率是4~7nm,放大倍数可从10倍到30万倍,中间连续可调,图像清晰,立体感强。扫描电镜制样简单,对具导电性样品,不必经过加工,只要其大小不大于样品座即可;对于非导电性样品,需在表面喷镀5~20nm厚导电膜,通常是用二次电子发射系数高的金或碳喷镀(习惯称镀金或镀碳)。近年发展起来的环境扫描电镜除了不必喷镀外,还可对活体进行观察,适于进行矿物-生物相互作用研究。

除以上矿物形貌研究方法外,还有光学测角仪,主要对晶体的面角进行测量。

四、扫描探针显微镜

探针显微镜(Scanning Probe Microscope,简称SPM)是指那些以隧道效应为理论基础发展起来的各种分析实验方法。它们都是通过一个探针相对于样品进行扫描,通过监测两者之间电、光、力、磁场等随针尖与样品间隙的变化来获取待测样品表面的有关信息。SPM家族中最为重要的两个成员是扫描隧道显微镜(Scanning Tunneling Microscope,简称STM)和原子力显微镜(Atomic Force Microscope,简称 AFM),其他 SPM 技术均是在此两种技术的基础上发展而来的。1988年和1990年,STM和AFM相继被引入矿物学的研究中,给矿物学、矿物材料学研究增添了一个有力工具。

1.扫描隧道显微镜

STM的基本原理是量子的隧道效应。所谓“隧道效应”是指当两个电极间被加上一个偏压并接近到一定程度时,电子从一个电极转移到另一个电极而产生电流的现象,所产生的电流称为隧道电流。根据产生隧道效应的原理,将原子限度的极细针尖和被研究物质表面作为两个电极,当样品与针尖的距离非常小(通常小于1nm)时,在外加电场作用下,电子会穿过两个电极之间的绝缘层由一个电极流向另一个电极,这种现象即前面介绍的隧道效应。隧道电流I是电子波函数重叠的量度,与针尖和样品之间的距离S及平均功函数X有关:

I∝Vbexp(-AX1/2S)

式中:Vb是加在针尖和样品之间的偏置电压;A为常数,在真空条件下约等于1;X为平均功函数

结晶学与矿物学

式中:X1和X2分别为针尖和样品的功函数。

由上式可知,隧道电流强度对针尖与样品间的距离非常敏感。当功函数为几个eV时,S每改变0.1nm,I将改变一个数量级。因此,利用电子反馈线路控制隧道电流的恒定,并用压电陶瓷材料控制针尖在样品表面的扫描,探针在垂直于样品表面方向上的高低变化就能反映出样品表面的起伏。将针尖在样品表面扫描时运动的轨迹直接在荧光屏或记录纸上显示出来,就得到了样品表面费米能级附近状态密度的分布或原子排列的图像。这种扫描方式称为恒流方式。也可控制针尖高度守恒扫描,通过记录隧道电流的变化来得到样品表面费米能级附近状态密度的分布,这种扫描方式称为恒高模式。因此一般的STM都有两种工作方式:恒流模式和恒高模式。恒高模式可以采用较快的扫描速度,因此可以减小噪音和热漂移的影响,较适合于矿物等较为复杂的物质表面的小范围观察。恒流模式则适合于低速扫描,常用于物质表面较大范围的观察。

扫描隧道显微镜的特点是STM实验不需接触样品就可研究物质表面结构。STM具有原子级的分辨率,使它成为目前分辨率最高的表面分析仪器。STM可以在各种环境中进行实验,STM可以直接观察原子间转移的过程。对于表面的吸附和渗透过程、矿物表面与溶液间的反应过程,STM可能描绘出较为详细的机理。

虽然STM具有很多独特的优点,但同时它也存在自己的局限性,如样品表面原子种类不同,或样品表面吸附有原子、分子时,由于不同种类的原子或分子团等具有不同的电子态密度和功函数,此时STM给出的等电子态密度轮廓不再对应于样品表面原子的起伏,而是表面原子起伏与不同原子和各自态密度组合后的综合效果。STM不能区分这两个因素。STM所观察的样品必须具有一定程度的导电性,对于半导体,观测的效果就差于导体。对于绝缘体则根本无法直接观察。针尖形状对图像有严重影响。

2.原子力显微镜

AFM的探头是对微弱力(如范德华力)极敏感的微悬臂。当微悬臂的针尖接触样品时,针尖尖端的原子与样品表面的原子会产生极微弱的排斥力。扫描样品时通过控制这种力使之恒定,针尖与样品间作用力的等位面便能从原子尺度上反映矿物表面的微形貌。

AFM不仅适用于导电样品,也适用于不导电样品。

3.扫描探针显微镜在矿物学研究中的应用

SPM应用于与矿物有关的研究始于1988年。近10年来SPM已被广泛应用于各种与矿物或矿物材料学研究有关的领域。

(1)矿物材料表面形貌研究

表面微形貌即表面的微观几何形态,是指特征尺度一般在微米级、纳米级到原子级的三维微观形貌。

在表面定性观察方面,SPM是目前分辨率最高的分析仪器。扫描电子显微镜虽是用于固体物质形貌观察的主要手段,但其分辨率难以超过6nm。SPM 的横向分辨率可达原子级,因此SPM填补了物质微形貌观察中分辨率从6nm到原子级之间的空白,使微形貌研究可以在前所未有的高分辨率水平上开展。在表面定量研究方面,SPM较其他分析手段更易实现表面二维、三维形貌数据的计算机采集和处理,进行形貌定量分析。因此SPM在表面形貌定量研究方面具有巨大潜力。国外近年来已开发出一些可计算材料表面二维参数的计算机软件。

SPM在矿物和材料表面形貌研究中的应用已有不少实例,用SPM观察到了很多矿物和其他材料表面重要的微形貌现象,如矿物表面的溶蚀现象、矿物和材料表面的生长纹等。

(2)矿物材料表面原子结构研究

SPM是目前唯一能在正空间观察物质表面原子排布的仪器,因此目前这方面的研究最为活跃。已用SPM观察到了若干矿物、有机和无机材料表面的原子排布、原子缺陷、表面重构、各种畴结构等重要的结构现象。如辉钼矿表面钼原子分布的STM图像、单晶硅表面7×7重构现象的STM像、硬石膏解理面的AFM图像,显示了氧和钙原子的排布等。

(3)矿物材料表面吸附和化学反应研究

表面吸附是表面科学研究中的重要课题。表面科学研究常常需要知道原子或分子吸附在表面的什么部位?它们如何与基底联结?用传统的表面分析技术只能了解表面的平均性质,不能对吸附的原子或分子成像,难以确切回答以上问题。而SPM在这一领域有独特的优点。由于SPM可在溶液中进行实验,因此SPM可用于直接观察表面的化学反应过程,如表面溶蚀过程和表面生长过程等。用SPM便获得了金浸泡在KI溶液中,I原子吸附在金表面的现象。

阅读全文

与颗粒形貌结构分析方法相关的资料

热点内容
简便叠衣服阔腿裤的方法省空间 浏览:493
议论文要写解决方法吗 浏览:920
雨伞怎么折是最简单的方法 浏览:848
vlookup函数查找出错解决方法 浏览:683
经纬仪测绘法测地图的方法步骤 浏览:727
多种方法测量微小长度的变化量 浏览:25
手机号算年龄方法用的什么基数 浏览:939
柠檬汁最简单的方法怎么做 浏览:494
18米高散热器安装连接方法 浏览:430
家里养猫最佳方法 浏览:134
保险费率厘定方法中最常用的方法 浏览:883
堆堆的制作方法视频 浏览:660
移民的解决方法 浏览:912
藏手机游戏方法 浏览:615
清理手机灰尘的好方法视频 浏览:388
烟草花叶病毒解决方法 浏览:839
供水器水压低解决方法 浏览:489
马兰头食用方法 浏览:832
贵州污泥的检测方法 浏览:303
腰椎锻炼飞燕方法 浏览:883