‘壹’ 数学找规律的方法
代数中的规律“有比较才有鉴别”。通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。 找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。揭示的规律,常常包含着事物的序列号。下面是我为大家整理的关于数学找规律的 方法 ,希望对您有所帮助。欢迎大家阅读参考学习!
1数学找规律方法
代数中的规律“有比较才有鉴别”。通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。 找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。揭示的规律,常常包含着事物的序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。例1 观察下列各式数:0,3,8,15,24,……。试按此规律写出的第100个数是___。”分析:解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。 我们把有关的量放在一起加以比较: 给出的数:0,3,8,15,24,……。 序列号: 1,2,3, 4, 5,……。
平面图形中的规律:图形变化也是经常出现的。作这种数学规律的题目,都会涉及到一个或者几个变化的量。所谓找规律,多数情况下,是指变量的变化规律。所以,抓住了变量,就等于抓住了解决问题的关键。
2数学找规律方法
从具体的.实际的恩提出发,观察各个数量的特点及相互之间的变化规律。由此及彼,合理联想,大胆猜想善于类比,从不同事物中发现相似或相同点; 总结 规律,得出结论,并验证结论正确与否;在探索规律的过程中,要善于变化 思维方式 ,做到事半功倍 探索规律是一种思维活动,及思维从特殊到一半的跳跃,需要有一定的归纳与综合能力。
当以知的数据有很多组时,需要仔细观察,反复比较,才能准确找出规律。需用到的数学方法有:分类讨论法.转化法.归纳法.通过观察.分析.综合.归纳.概括.推理.判断等一系列探索活动,解答有关探索规律性问题的特点是问题的结论或条件不直接给出,需要逐步确定需要的结论和条件。解答这类题的关键是认真审题,掌握规律.合理推测.认真验证,从而得出问题的正确结论。
3数学找规律方法
标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。找出的规律,通常包括序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。 例如,观察下列各式数:0,3,8,15,24,……。试按此规律写出的第100个数是1002-1,第n个数是n2-1。 解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。我们把有关的量放在一起加以比较: 给出的数:0,3,8,15,24,……。 序列号:1,2,3, 4, 5,……。 容易发现,已知数的每一项,都等于它的序列号的平方减1。因此,第n项n2-1,第100项是1002-1。
公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n有关。 例如:1,9,25,49,(81),(121),的第n项为( (2n-1)2 ), 1,2,3,4,5......,从中可以看出n=2时,正好是2×2-1的平方,n=3时,正好是2×3-1的平方,以此类推。
4数学找规律方法
初中数学的学习、学好要在理解的基础上进行学习,这是我们在学习中应该遵循的第一原则,也是其他科目普遍的共性及今后的学习考试趋势。首先对于概念、公式、定义、定理、公理要有准确的认识,到位的理解,除此之外,学生在这些知识点的学习中也是有一些规律可循的,反复认识理解就是一个好办法,比如数学概念的命名,都是有一定意义的,比如有理数(有道理的,有规律的,说得清的数――有限小数及无限循环小数);同位角、内错角、同旁内角的含义,内心、外心、非负数的含义等,都可以先作一个简单的认识,之后离真正的深刻的理解就不远了,而真正理解的东西想忘都忘不了。
‘贰’ 数学找规律题技巧是什么
数学找规律题技巧是:
1、先观察。做找规律题,拿到题目后,先不要着急做题,首先应该先去观察。主要是观察题目和题型,通过观察,揣摩下出题者的用意,有些简单的题,通过观察就可以得到想要的答案的。所以拿到题目时,先以观察为主,观察题目,观察数字,观察图画。
2、列条件。做找规律题,在观察完题目后,假如还是没有找到准确的答案,那就建议你要去学会列条件了。把题目已知的条件列出来,变着方式和方法去列,通过动手动笔,说不定你就能找到你想要的答案的。
3、去比较。做找规律题,要学会去比较。比较就是比较题目的差异。特别是图画型找规律题,多花点心思去比较图画的异同点,从中找到对应的答案,比一比,说不定就把答案比出来了。
4、大胆猜。做找规律题,要敢于大胆猜。有些题目,你看了半天也没有找到解题的思路或者是方法,也没有发现具体的规律,这个时候,建议你尝试去猜规律,猜了后再来一题一题的试,能够把题目试出来最好,假如试不出来,又再去猜一种规律,又再来试。
5、用公式。做找规律题,要善于用公式。特别是在做一些数列题或者数字题的时候,有可能你观察半天都找不到规律,但是你去用相关的数学公式一套,多半就把规律套出来了。所以去记住一些数学公式也很重要。
6、巧假设。做找规律题,要敢于去假设。有些题,要想找到规律,在必要的时候要学会去假设,假设条件,假设规律,假设结果,通过假设,说不定你就能找到题目的规律了。
‘叁’ 一年级找规律方法窍门是什么
如下:
1、同一行数字遵循单一排列的规律:
有的按单数排列,有的按双数排列,有的单数、双数同时出现,通过计算数与数之间的差找出规律,一年级常见是的差是1、2、3、5以及差是10的数字排列。这种单一规律的数字排列题相对简单一些,只要算出前后相邻的两个数之间的差是多少,找出共同的规律就可以了。
2、多种图形排列找规律:
把相互不相同不重复的几个实物或图形分为一组,观察分析每一组实物或图形之间和谁相邻。引导孩子根据上一个实物或图形(或下一个实物或图形)找到与它相邻的实物或图形填充进去即可。
一年级怎么做找规律的题目?
给题目分类,之所以要分类是因为不同类型的题目需要用不同的解题策略,分类是有选择性地运用策略的前提。就习题中常见的找规律题型而言,可以把这种题型分成两类。 一是由数字组成的题型,一是由图形组成的题型。
数字型找规律题的题目通常有三种组合方式,单数组合型、双数组合型、单数双数混合组合型。不同题型的解题策略是相同的。
观察相邻两数的关系,利用加法或减法,求得数,尽量让小孩自己发现得数的规律,进而解决问题。图形型找规律题的题目,通常可以分为两类,单一图形组成型,多种图形组成型,教会小孩发现图像数量的变化趋势,引导小孩发现图像数量变化的规律。
‘肆’ 如何学会找规律
你说的找通项公式的问题,高中的数列部分会专门学习。
现在你可以这样理解:
一列数字的统一数学公式就是要在1 2 3 4 。。。。这列自然数和你要找规律的数列之间建立一个一一对应的关系。
比如,1 3 5 7 9。。。。
1 2 3 4 5。。。。
它们的关系就是,上面的每个数等于相应的下面的自然数乘以2再减去1
那么,就是2n-1
第一个数,把n=1带入,得到1
第二个数,把n=2带入,得到3
第三个数,把n=3带入,得到5
等等,
所有的找规律,都是让你建立这样一个对应,我们说的通项公式,就是给一个数n,我们就能计算第n个数是多少,这就是统一的表达式。
‘伍’ 小学找规律题的技巧
下面是找规律题常见的4种解题方法。
一、标序号
我们把已知的数和对应的序列号放在一起观察、比较,常见的有等差数列。
二、公因式法
把给出的数分成最小公因式相乘,观察是否与n,或2n、3n有关。
三、第一位数法
所给的数同时减去、加上,或乘以,或除以第一位数,成为新数列,再找出与序列号的关系,可发现规律。
四、奇位、偶位数字分开
把奇数位置与偶数位置的数分别列出来,成为两个数列,再找出规律。
找规律填数是小学数学常考的题型,主要考察学生的观察能力、思维能力和运算能力。
要想解答这类问题,一定要学会观察、发现问题的特点和变化规律。
怎么才能把数学学好呢?第一步、先让孩子复习理解所有小学学过的数学知识点,公式,定 律 ,把这些重要的知识点梳理出来,归纳汇总在一起, 然后逐渐的理解吃透这些公式知识点:
第二步、把整个小学阶段的数学运用题分类整理以后遇到同样的题型孩子就会做了, 实际上整个小学数学的应用题,奥数题只有32种, 只要把这32种应用题奥数题全部弄懂吃透,孩子的数学肯定优秀。
‘陆’ 一年级找规律方法窍门是什么
找规律的方法:
1、标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。找出的规律,通常包序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
2、斐波那契数列法:每个数都是前两个数的和。
3、等差数列法:每两个数之间的差都相等。
4、跳格子法:可以间隔着看,看隔着的数之间有什么关系,如14,1,12,3,10,5,第奇数项成等差数列,第偶数项也成等差数列,于是接下来应该填8。
简介
找规律是分几种类型的,比如几何图形,比如各种数列,还比如图像找规律,算式找规律,字母找规律,等等。
总之,面对千变万换的题型,始终要联系前后两者的和差倍分,或是其他规律。要认真发现,耐心去算,遇到实在困惑的必须要不断求助,增强自己的能力,培养对变化中不变量的敏感度,以及自己的数感,图感。
‘柒’ 初一数学找规律经典题技巧解析是什么
数字找规律类型总结:
在实际解题过程中,根据相邻数之间的关系分为两大类:
(1)相邻数之间通过加、减、乘、除、平方、开方等方式发生联系,产生规律,主要有以下几种规律:相邻两个数加、减、乘、除等于第三数;相邻两个数加、减、乘、除后再加或者减一个常数等于第三数;前一个数的平方等于第二个数;前一个数的平方再加或者减一个常数等于第二个数;前一个数乘一个倍数加减一个常数等于第二个数。
(2)数据中每一个数字本身构成特点形成各个数字之间的规律
数据中每一个数字都是n 的平方构成或者是n 的平方加减一个常数构成,或者是n的平方加减n构成;每一个数字都是n的立方构成或者是n的立方加减一个常数构成,或者是n的立方加减n;数据中每一个数字都是n的倍数加减一个常数;以上是数字推理的一些基本规律,必须掌握。但掌握这些规律后,这就需要在对各种题型认真练习的基础上,应逐步形成自己的一套解题思路和技巧。
规律型--数字的变化类解题基本技巧:
(1)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。找出的规律,通常包序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
(2)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关。
(3)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(1)、(2)、技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来。
(4)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来。
(5)同技巧(3)、(4)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3)。当然,同时加、或减的可能性大一些,同时乘、或除的不太常见。
(6)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律。