导航:首页 > 研究方法 > 下列属于多变量统计分析的方法是

下列属于多变量统计分析的方法是

发布时间:2023-10-13 17:53:54

A. SPSS判别分析

判别分析又称“分辨法”,是在分类确定的条件下,根据某一研究对象的各种特征值判别其类型归属问题的一种多变量统计分析方法

y=a1x1+a2x2+……+anxn(a1为系数,Xn为变量)。事先非常明确共有几个类别,目的是从已知样本中训练出判别函数

1.各自变量为连续性或有序分类变量

2.自变量和因变量符合线性假设

3.各组的协方差矩阵相等,类似与方差分析中的方差齐

4.变量间独立,无共线性

注:违反条件影响也不大,主要看预测准不准,准的话违反也无所谓

1.对客户进行信用预测;2.寻找潜在客户等

1.最大似然法

适用于 自变量均为分类变量 的情况,算出这些情况的概率组合,基于这些组合大小进行判别

2.距离判别

对新样品求出他们离各个类别重心的距离远近,适用于 自变量均为连续变量 的情况, 对变量分布类型无严格要求

3.Fisher判别法

与主成份分析有关,对分布、方差等都没有什么限制,按照类别与类别差异最大原则提取公因子然后使用公因子判别

4.Bayes判别

强项是进行多类判别,要求总体呈多元正态分布 。利用贝叶斯公式,概率分布逻辑衍生出来一个判别方法,计算这个样本落入这个类别的概率,概率最大就被归为一类

在spss中一般用Fisher判别即可,要考虑概率及误判损失最小的用Bayes判别,但变量较多时,一般先进行逐步判别筛选出有统计意义的变量,但通常在判别分析前我们已经做了相关的预分析,所以不推荐使用逐步判别分析(采用步进法让自变量逐个尝试进入函数式,如果进入到函数式中的自变量符合条件,则保留在函数式中,否则,将从函数式中剔除)。

都是研究分类的。聚类分析,对总体到底有几种类型不知道(研究分几类较为合适需从计算中加以调整)。判别分析则是在总体类型划分已知,对当前新样本判断它们属于哪个总体。如我们对研究的多元数据的特征不熟悉,当然要进行聚类分析,才能考虑判别分析问题。

1.自身验证(拿训练数据直接预测验证,但是对预测样本预测好不代表对新样本预测好)

2.外部数据验证(收集新的数据来验证,这是最客观最有效的,但是麻烦而且两次收集的数据不一定是同质的)

3.样本二分法(一般划分2/3为训练集,1/3为验证集,但是浪费了1/3的样本)

4.交互验证(Cross-Validation)----刀切法(10分法,数据划分为10个集合,每次挑选一个出来做验证集,其余9个做训练集,可以做10次,因为验证集可换10种可能)

在spss软件中通过尺罩【分析】—【留一分类】获得此项结论。

下面采用实例来说明。

如下图-1数据集包含了刚毛、变色、弗吉尼亚这三种鸢尾花的花萼长、宽和花瓣长、宽,分析目的是希望能够使用这4个变量来对花的种类进行区分。spno为事先的分组,度量标准设为【名义】。

主要是对假设条件的检验,在spss中 【分析】—【描述统计】—【描述】 ,如图-2

如图-3可以看到数据的分布没有特别的离异点,也没有缺失值和不合理的分布,从而可以用该数据做接下来的判别分析。

1)选择分类变量及其范围:如图-4所示

【分组变量】矩形框中选择表明已知的观测量所属类别的变量(一定是离散变量),在定义范围框最小值中输入该分类变量的最小值,最大框中输入陵橘闹该分类变量的最大值。

2)    指定判别分析的自变量

3) 选择观测量

如果希望使用一部分观测量进行判别函数的推导而且有一个变量的某个值可以作为这些观测量的标识,则用Select 功能进行选择,键入标识参与分析的观测量所具有的该变量值, 一般均伍升使用数据文件中的所有合法观测量此步骤可以省略。

4) 选择分析方法:如图-5所示

【一起输入自变量】 选项,当认为所有自变量都能对观测量特性提供丰富的信息时,使用该选择项。选择该项将不加选择地使用所有自变量进行判别分析,建立全模型,不需要进一步进行选择。

【使用步进式方法】 选项,当不认为所有自变量都能对观测量特性提供丰富的信息时,使用该选择项。因此需要判别贡献的大小,再进行选择当鼠标单击该项时【方法】按钮加亮,可以进一步选择判别分析方法。一般我们做判别分析前已经做了相关的预分析(不推荐)。

如图-6所示【方法】选项:步进法让自变量逐个尝试进入函数式,如果进入到函数式中的自变量符合条件,则保留在函数式中,否则,将从函数式中剔除。可供选择的判别分析方法有:

1.Wilks'lambda 选项,它是组内平方和与总平方和之比,用于描述各组的均值是否存在显着差别,当所有观测组的均值都相等时,Wilks’lambda值为1;当组内变异与总变异相比很小时,表示组件变异较大,表示组间变异较大,系数接近于0。系统默认选项。

2.未解释方差。 它指把计算残余最小的自变量优先纳入到判别函数式中。

3.Mahalanobis’距离 。它把每步都使靠得最近的两类间的马氏距离最大的变量进入判别函数

4.最小 F值。它把方差差异最大的自变量优先纳入到判别函数中。

5.Rao’s V 。劳氏增值法:它把劳氏统计量V产生最大增值的自变量优先纳入到判别函数中。可以对一个要加入到模型中的变量的V 值指定一个最小增量。选择此种方法后,应该在该项下面的V-to-enter 后的矩形框中输入这个增量的指定值。当某变量导致的V值增量大于指定值的变量后进入判别函数。

【标准】:选择逐步判别停止的判据

1.使用F值。系统默认的判据。当加人一个变量(或剔除一个变量)后,对在判别函数中的变量进行方差分析。当计算的F值大于指定的进入值时,该变量保留在函数中。默认值是3.84:当该变量使计算的F值小于指定的删除值时,该变量从函数中剔除。默认值为2.71。即当被加入的变量F 值为3.84 时才把该变量加入到模型中,否则变量不能进入模型;或者,当要从模型中移出的变量F值<2.71时,该变量才被移出模型,否则模型中的变量不会被移出.设置这两个值时应该注意进入值>删除值。

2.使用F检的概率。决定变量是否加入函数或被剔除的概率而不是用F值。加入变量的F值概率的默认值是0.05(5%),移出变量的F值概率是0.10(10%)。删除值(移出变量的F值概率) >进入值(加入变量的F值概率)。

【输出】:对于逐步选择变量的过程和最后结果的显示可以通过输出栏中的两项进行选择:

1.步进摘要。要求在逐步选择变量过程中的每一步之后显示每个变量的统计量。

2.两两组间距离的F值。要求显示两两类之间的两两F值矩阵。

这里我们选择建立全模型,所以不用对方法进行设置。

如图-7所示【statistics】选项:可以选择的输出统计量分为以下3 类:

(1) 描述性

1.平均值。可以输出各类中各自变量的均值、标准差和各自变量总样本的均值和标准差。

2.单变量ANOVA复选项。对各类中同一自变量均值都相等的假设进行检验,输出单变量的方差分析结果。

3.Box’s M 复选项。对各组的协方差矩阵相等的假设进行检验。如果样本足够大,差异不显着的p值表明矩阵差异不明显。

(2)函数系数栏:选择判别函数系数的输出形式

1.Fisherh’s。给出Bayes判别函数的系数。对每一类给出一组系数,并给出该组中判别分数最大的观测量。(注意:这个选项不是要给出Fisher判别函数的系数。这个复选框的名字之所以为Fisher’s,是因为按判别函数值最大的一组进行归类这种思想是由Fisher提出来的。这里极易混淆,请注意辨别。)

2.未标准化。给出未标准化的判别函数(即典型判别函数)的系数(SPSS默认给出标准化的判别函数信息)。

(3)矩阵

1.组内相关。即类内相关矩阵,它是根据在计算相关矩阵之前将各组(类)协方差矩阵平均后计算类内相关矩阵。

2.组内协方差。即计算并显示合并类内协方差矩阵,是将各组(类)协方差矩阵平均后计算的。区别于总协方差阵。

3.分组协方差。对每类输出显示一个协方差矩阵。

4.总体协方差。计算并显示总样本的协方差矩阵。

如图-8所示【分类】选项:

(1) 先验概率:两者选其一

1.所有组相等。各类先验概率相等。若分为m类,则各类先验概率均为1/m。系统默认

2.根据组大小计算。由各类的样本量计算决定,即各类的先验概率与其样本量成正比。

(2) 使用协方差矩阵 :选择分类使用的协方差矩阵

1.在组内。指定使用合并组内协方差矩阵进行分类。系统默认

2.分组。指定使用各组协方差矩阵进行分类。

由于分类是根据判别函数,而不是根据原始变量,因此该选择项不是总等价于二次判别。

(3) 图:选择要求输出的统计图

1.合并组。生成一张包括各类的散点图。该散点图是根据前两个判别函数值作的散点图。如果只有一个判别函数就输出直方图。

2.分组。根据前两个判别函数值对每一类生成一张激点图,共分为几类就生成几张散点图。如果只有一个判别函数就输出直方图。

3.区域图。生成用于根据函数值把观测量分到各组中去的边界图。此种统计图把一张图的平面划分出与类数相同的区域。每一类占据一个区各类的均值在各区中用*号标出。如果仅有一个判别函数,则不作此图。

(4) 输出栏:选择生成到输出窗中的分类结果

1.个案摘要。要求输出每个观测量包括判别分数、实际类、预测类(根据判别函数求得的分类结果)和后验概率等。选择此项还可以选择其附属选择项:将个案限制在前,并在后面的小矩形框中输入观测量数n选择。此项则仅对前n个观测量输出分类结果。观测数量大时可以选择此项。

2.摘要表。要求输出分类的小结,给出正确分类观测量数(原始类和根据判别函数计算的预测类相同)和错分观测量数和错分率。

3.不考虑该个案时的分类(留一分类)。输出对每个观测量进行分类的结果,所依据的判别是由除该观测量以外的其他观测量导出的,也称为交互校验结果。建议勾选

(5)使用均值替换缺失值:即用该类变量的均值代替缺失值。缺失值缺失大于10%,不介意勾选

本例中如图-8中勾选。

如图-9所示【保存】选项:指定生成并保存在数据文件中的新变量

1.预测组成员。要求建立一个新变量,预测观测量的分类。是根据判别分数把观测量按后验概率最大指派所属的类。每运行一次Discriminant过程,就建立一个表明使用判别函数预测各观测量属于哪一类的新变量。第1 次运行建立新变量的变量名为dis_l,如果在工作数据文件中不把前一次建立的新变量删除,第n次运行Descriminant 过程建立的新变量默认的变量名为dis_n。

2.判别分数。要求建立fisher判别分数的新变量。该分数是由未标准化的判别系数乘自变量的值,将这些乘积求和后加上常数得来。每次运行Discriminant过程都给出一组表明判别分数的新变量,建立几个判别函数就有几个判别分数变量。

3. 组成员概率。Bayes后验概率值。有m类,对一个观测量就会给出m个概率值,因此建立m个新变量。

本例不勾选。

下面为最重要的结果,可在撰写结论使用。

B. 常用的多元分析方法

包括3类:①多元方差分析、多元回归分析和协方差分析,称为线性模型方法,用以研究确定的自变量与因变量之间的关系;②判别函数分析和聚类分析,用以研究对事物的分类;③主成分分析、典型相关和因素分析,研究如何用较少的综合因素代替为数较多的原始变量。
多元方差分析
是把总变异按照其来源(或实验设计)分为多个部分,从而检验各个因素对因变量的影响以及各因素间交互作用的统计方法。例如,在分析2×2析因设计资料时,总变异可分为分属两个因素的两个组间变异、两因素间的交互作用及误差(即组内变异)等四部分,然后对组间变异和交互作用的显着性进行F检验。
多元方差分析的优点
是可以在一次研究中同时检验具有多个水平的多个因素各自对因变量的影响以及各因素间的交互作用。其应用的限制条件是,各个因素每一水平的样本必须是独立的随机样本,其重复观测的数据服从正态分布,且各总体方差相等。
多元回归分析
用以评估和分析一个因变量与多个自变量之间线性函数关系的统计方法。一个因变量y与自变量x1、x2、…xm有线性回归关系是指: 其中α、β1…βm是待估参数,ε是表示误差的随机变量。通过实验可获得x1、x2…xm的若干组数据以及对应的y值,利用这些数据和最小二乘法就能对方程中的参数作出估计,记为╋、勮…叧,它们称为偏回归系数。
多元回归分析的优点
是可以定量地描述某一现象和某些因素间的线性函数关系。将各变量的已知值代入回归方程便可求得因变量的估计值(预测值),从而可以有效地预测某种现象的发生和发展。它既可以用于连续变量,也可用于二分变量(0,1回归)。多元回归的应用有严格的限制。首先要用方差分析法检验自变量y与m个自变量之间的线性回归关系有无显着性,其次,如果y与m个自变量总的来说有线性关系,也并不意味着所有自变量都与因变量有线性关系,还需对每个自变量的偏回归系数进行t检验,以剔除在方程中不起作用的自变量。也可以用逐步回归的方法建立回归方程,逐步选取自变量,从而保证引入方程的自变量都是重要的。
协方差分析
把线性回归与方差分析结合起来检验多个修正均数间有无差别的统计方法。例如,一个实验包含两个多元自变量,一个是离散变量(具有多个水平),一个是连续变量,实验目的是分析离散变量的各个水平的优劣,此变量是方差变量;而连续变量是由于无法加以控制而进入实验的,称为协变量。在运用协方差分析时,可先求出该连续变量与因变量的线性回归函数,然后根据这个函数扣除该变量的影响,即求出该连续变量取等值情况时因变量的修正均数,最后用方差分析检验各修正均数间的差异显着性,即检验离散变量对因变量的影响。
协方差分析兼具方差分析和回归分析的优点
可以在考虑连续变量影响的条件下检验离散变量对因变量的影响,有助于排除非实验因素的干扰作用。其限制条件是,理论上要求各组资料(样本)都来自方差相同的正态总体,各组的总体直线回归系数相等且都不为0。因此应用协方差分析前应先进行方差齐性检验和回归系数的假设检验,若符合或经变换后符合上述条件,方可作协方差分析。
判别函数分析
判定个体所属类别的统计方法。其基本原理是:根据两个或多个已知类别的样本观测资料确定一个或几个线性判别函数和判别指标,然后用该判别函数依据判别指标来判定另一个个体属于哪一类。 判别分析不仅用于连续变量,而且借助于数量化理论亦可用于定性资料。它有助于客观地确定归类标准。然而,判别分析仅可用于类别已确定的情况。当类别本身未定时,预用聚类分析先分出类别,然后再进行判别分析。
聚类分析
解决分类问题的一种统计方法。若给定n个观测对象,每个观察对象有p个特征(变量),如何将它们聚成若干可定义的类?若对观测对象进行聚类,称为Q型分析;若对变量进行聚类,称为R型分析。聚类的基本原则是,使同类的内部差别较小,而类别间的差别较大。最常用的聚类方案有两种。一种是系统聚类方法。例如,要将n个对象分为k类,先将n个对象各自分成一类,共n类。然后计算两两之间的某种“距离”,找出距离最近的两个类、合并为一个新类。然后逐步重复这一过程,直到并为k类为止。另一种为逐步聚类或称动态聚类方法。当样本数很大时,先将n个样本大致分为k类,然后按照某种最优原则逐步修改,直到分类比较合理为止。 聚类分析是依据个体或变量的数量关系来分类,客观性较强,但各种聚类方法都只能在某种条件下达到局部最优,聚类的最终结果是否成立,尚需专家的鉴定。必要时可以比较几种不同的方法,选择一种比较符合专业要求的分类结果。
主成分分析
把原来多个指标化为少数几个互不相关的综合指标的一种统计方法。例如,用p个指标观测样本,如何从这p个指标的数据出发分析样本或总体的主要性质呢?如果p个指标互不相关,则可把问题化为p个单指标来处理。但大多时候p个指标之间存在着相关。此时可运用主成分分析寻求这些指标的互不相关的线性函数,使原有的多个指标的变化能由这些线性函数的变化来解释。这些线性函数称为原有指标的主成分,或称主分量。 主成分分析有助于分辨出影响因变量的主要因素,也可应用于其他多元分析方法,例如在分辨出主成分之后再对这些主成分进行回归分析、判别分析和典型相关分析。主成分分析还可以作为因素分析的第一步,向前推进就是因素分析。其缺点是只涉及一组变量之间的相互依赖关系,若要讨论两组变量之间的相互关系则须运用典型相关。
典型相关分析
先将较多变量转化为少数几个典型变量,再通过其间的典型相关系数来综合描述两组多元随机变量之间关系的统计方法。设x是p元随机变量,y是q元随机变量,如何描述它们之间的相关程度?当然可逐一计算x的p个分量和y的q个分量之间的相关系数(p×q个), 但这样既繁琐又不能反映事物的本质。如果运用典型相关分析,其基本程序是,从两组变量各自的线性函数中各抽取一个组成一对,它们应是相关系数达到最大值的一对,称为第1对典型变量,类似地还可以求出第2对、第3对、……,这些成对变量之间互不相关,各对典型变量的相关系数称为典型相关系数。所得到的典型相关系数的数目不超过原两组变量中任何一组变量的数目。 典型相关分析有助于综合地描述两组变量之间的典型的相关关系。其条件是,两组变量都是连续变量,其资料都必须服从多元正态分布。 以上几种多元分析方法各有优点和局限性。每一种方法都有它特定的假设、条件和数据要求,例如正态性、线性和同方差等。因此在应用多元分析方法时,应在研究计划阶段确定理论框架,以决定收集何种数据、怎样收集和如何分析数据资料。

C. 数学建模-方法合集

线性规划(Linear programming,简称LP)是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。研究线性约束条件下线性目标函数的极值问题的数学理论和方法。英文缩写LP。它是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。为合理地利用有限的人力、物力、财力等资源作出的最优决策,提供科学的依据。

0-1规划是决策变量仅取值0或1的一类特殊的整数规划。在处理经济管理中某些规划问题时,若决策变量采用 0-1变量即逻辑变量,可把本来需要分别各种情况加以讨论的问题统一在一个问题中讨论。

蒙特卡罗法(Monte Carlo method)是以概率与统计的理论、方法为基础的一种计算方法,蒙特卡罗法将所需求解的问题同某个概率模型联系在一起,在电子计算机上进行随机模拟,以获得问题的近似解。因此,蒙特卡罗法又称随机模拟法或统计试验法。

在生活中经常遇到这样的问题,某单位需完成n项任务,恰好有n个人可承担这些任务。由于每人的专长不同,各人完成任务不同(或所费时间),效率也不同。于是产生应指派哪个人去完成哪项任务,使完成n项任务的总效率最高(或所需总时间最小)。这类问题称为指派问题或分派问题。

无约束最优化方法是求解无约束最优化问题的方法,有解析法和直接法两类。

解析法

解析法就是利用无约束最优化问题中目标函数 f(x) 的解析表达式和它的解析性质(如函数的一阶导数和二阶导数),给出一种求它的最优解 x 的方法,或一种求 x 的近似解的迭代方法。

直接法

直接法就是在求最优解 x*的过程中,只用到函数的函数值,而不必利用函数的解析性质,直接法也是一种迭代法,迭代步骤简单,当目标函数 f(x) 的表达式十分复杂,或写不出具体表达式时,它就成了重要的方法。

可用来解决管路铺设、线路安装、厂区布局和设备更新等实际问题。基本内容是:若网络中的每条边都有一个数值(长度、成本、时间等),则找出两节点(通常是源节点和阱节点)之间总权和最小的路径就是最短路问题。 [1]

例如:要在n个城市之间铺设光缆,主要目标是要使这 n 个城市的任意两个之间都可以通信,但铺设光缆的费用很高,且各个城市之间铺设光缆的费用不同,因此另一个目标是要使铺设光缆的总费用最低。这就需要找到带权的最小生成树

管道网络中每条边的最大通过能力(容量)是有限的,实际流量不超过容量。

最大流问题(maximum flow problem),一种组合最优化问题,就是要讨论如何充分利用装置的能力,使得运输的流量最大,以取得最好的效果。求最大流的标号算法最早由福特和福克逊与与1956年提出,20世纪50年代福特(Ford)、(Fulkerson)建立的“网络流理论”,是网络应用的重要组成成分。

最小费用最大流问题是经济学和管理学中的一类典型问题。在一个网络中每段路径都有“容量”和“费用”两个限制的条件下,此类问题的研究试图寻找出:流量从A到B,如何选择路径、分配经过路径的流量,可以在流量最大的前提下,达到所用的费用最小的要求。如n辆卡车要运送物品,从A地到B地。由于每条路段都有不同的路费要缴纳,每条路能容纳的车的数量有限制,最小费用最大流问题指如何分配卡车的出发路径可以达到费用最低,物品又能全部送到。

旅行推销员问题(英语:Travelling salesman problem, TSP)是这样一个问题:给定一系列城市和每对城市之间的距离,求解访问每一座城市一次并回到起始城市的最短回路。它是组合优化中的一个NP困难问题,在运筹学和理论计算机科学中非常重要。

最早的旅行商问题的数学规划是由Dantzig(1959)等人提出,并且是在最优化领域中进行了深入研究。许多优化方法都用它作为一个测试基准。尽管问题在计算上很困难,但已经有了大量的启发式算法和精确方法来求解数量上万的实例,并且能将误差控制在1%内

计划评审法(Program Evaluation and Review Technique,简称PERT),是指利用网络分析制订计划以及对计划予以评价的技术。它能协调整个计划的各道工序,合理安排人力、物力、时间、资金,加速计划的完成。在现代计划的编制和分析手段上,PERT被广泛使用,是现代化管理的重要手段和方法。

关键路线法(Critical Path Method,CPM),又称关键线路法。一种计划管理方法。它是通过分析项目过程中哪个活动序列进度安排的总时差最少来预测项目工期的网络分析。

人口系统数学模型,用来描述人口系统中人的出生、死亡和迁移随时间变化的情况,以及它们之间定量关系的数学方程式或方程组,又称人口模型。

初值问题是指在自变量的某值给出适当个数的附加条件,用来确定微分方程的特解的这类问题。

如果在自变量的某值给出适当个数的附加条件,用来确定微分方程的特解,则这类问题称为初值问题。

边值问题是定解问题之一,只有边界条件的定解问题称为边值问题。二阶偏微分方程(组)一般有三种边值问题:第一边值问题又称狄利克雷问题,它的边界条件是给出未知函数本身在边界上的值;第二边值问题又称诺伊曼边值问题或斜微商问题,它的边界条件是给出未知函数关于区域边界的法向导数或非切向导数;第三边值问题又称鲁宾问题,它的边界条件是给出未知函数及其非切向导数的组合

目标规划是一种用来进行含有单目标和多目标的决策分析的数学规划方法。线性规划的一种特殊类型。它是在线性规划基础上发展起来的,多用来解决线性规划所解决不了的经济、军事等实际问题。它的基本原理、数学模型结构与线性规划相同,也使用线性规划的单纯形法作为计算的基础。所不同之处在于,它从试图使目标离规定值的偏差为最小入手解题,并将这种目标和为了代表与目标的偏差而引进的变量规定在表达式的约束条件之中。

时间序列(或称动态数列)是指将同一统计指标的数值按其发生的时间先后顺序排列而成的数列。时间序列分析的主要目的是根据已有的历史数据对未来进行预测。

支持向量机(Support Vector Machine,SVM)是Corinna Cortes和Vapnik等于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。

在机器学习中,支持向量机(SVM,还支持矢量网络)是与相关的学习算法有关的监督学习模型,可以分析数据,识别模式,用于分类和回归分析。

聚类分析法是理想的多变量统计技术,主要有分层聚类法和迭代聚类法。 聚类分析也称群分析、点群分析,是研究分类的一种多元统计方法。

例如,我们可以根据各个银行网点的储蓄量、人力资源状况、营业面积、特色功能、网点级别、所处功能区域等因素情况,将网点分为几个等级,再比较各银行之间不同等级网点数量对比状况。

成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。

在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。

主成分分析首先是由K.皮尔森(Karl Pearson)对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。

因子分析是指研究从变量群中提取共性因子的统计技术。最早由英国心理学家C.E.斯皮尔曼提出。他发现学生的各科成绩之间存在着一定的相关性,一科成绩好的学生,往往其他各科成绩也比较好,从而推想是否存在某些潜在的共性因子,或称某些一般智力条件影响着学生的学习成绩。因子分析可在许多变量中找出隐藏的具有代表性的因子。将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。

判别分析又称“分辨法”,是在分类确定的条件下,根据某一研究对象的各种特征值判别其类型归属问题的一种多变量统计分析方法。

其基本原理是按照一定的判别准则,建立一个或多个判别函数,用研究对象的大量资料确定判别函数中的待定系数,并计算判别指标。据此即可确定某一样本属于何类。

当得到一个新的样品数据,要确定该样品属于已知类型中哪一类,这类问题属于判别分析问题。

对互协方差矩阵的一种理解,是利用综合变量对之间的相关关系来反映两组指标之间的整体相关性的多元统计分析方法。它的基本原理是:为了从总体上把握两组指标之间的相关关系,分别在两组变量中提取有代表性的两个综合变量U1和V1(分别为两个变量组中各变量的线性组合),利用这两个综合变量之间的相关关系来反映两组指标之间的整体相关性。

对应分析也称关联分析、R-Q型因子分析,是近年新发展起来的一种多元相依变量统计分析技术,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。

对应分析主要应用在市场细分、产品定位、地质研究以及计算机工程等领域中。原因在于,它是一种视觉化的数据分析方法,它能够将几组看不出任何联系的数据,通过视觉上可以接受的定位图展现出来。

多维标度法是一种将多维空间的研究对象(样本或变量)简化到低维空间进行定位、分析和归类,同时又保留对象间原始关系的数据分析方法。

在市场营销调研中,多维标度法的用途十分广泛。被用于确定空间的级数(变量、指标),以反映消费者对不同品牌的认知,并且在由这些维构筑的空间中,标明某关注品牌和消费者心目中理想品牌的位置。

偏最小二乘法是一种数学优化技术,它通过最小化误差的平方和找到一组数据的最佳函数匹配。 用最简的方法求得一些绝对不可知的真值,而令误差平方之和为最小。 很多其他的优化问题也可通过最小化能量或最大化熵用最小二乘形式表达。

系统介绍了禁忌搜索算法、模拟退火算法、遗传算法、蚁群优化算法、人工神经网络算法和拉格朗日松弛算法等现代优化计算方法的模型与理论、应用技术和应用案例。

禁忌(Tabu Search)算法是一种元启发式(meta-heuristic)随机搜索算法,它从一个初始可行解出发,选择一系列的特定搜索方向(移动)作为试探,选择实现让特定的目标函数值变化最多的移动。为了避免陷入局部最优解,TS搜索中采用了一种灵活的“记忆”技术,对已经进行的优化过程进行记录和选择,指导下一步的搜索方向,这就是Tabu表的建立。

模拟退火算法来源于固体退火原理,是一种基于概率的算法,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。

传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(indivial)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。

The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is a multi-criteria decision analysis method, which was originally developed by Hwang and Yoon in 1981[1] with further developments by Yoon in 1987,[2] and Hwang, Lai and Liu in 1993.[3] TOPSIS is based on the concept that the chosen alternative should have the shortest geometric distance from the positive ideal solution (PIS)[4] and the longest geometric distance from the negative ideal solution (NIS).[4]

TOPSIS是一种多准则决策分析方法,最初由Hwang和Yoon于1981年开发[1],1987年由Yoon进一步开发,[2]和Hwang, 1993年赖和刘。[3] TOPSIS是基于这样一个概念,即所选择的方案应该具有离正理想解(PIS)最短的几何距离[4]和距负理想解(NIS)最远的几何距离[4]。

模糊综合评价法是一种基于模糊数学的综合评价方法。该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。

数据包络分析方法(Data Envelopment Analysis,DEA)是运筹学、管理科学与数理经济学交叉研究的一个新领域。它是根据多项投入指标和多项产出指标,利用线性规划的方法,对具有可比性的同类型单位进行相对有效性评价的一种数量分析方法。DEA方法及其模型自1978年由美国着名运筹学家A.Charnes和W.W.Cooper提出以来,已广泛应用于不同行业及部门,并且在处理多指标投入和多指标产出方面,体现了其得天独厚的优势。

对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。因此,灰色关联分析方法,是根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法。

主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标(即主成分),其中每个主成分都能够反映原始变量的大部分信息,且所含信息互不重复。这种方法在引进多方面变量的同时将复杂因素归结为几个主成分,使问题简单化,同时得到的结果更加科学有效的数据信息。在实际问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。主要方法有特征值分解,SVD,NMF等。

秩和比法(Rank-sum ratio,简称RSR法),是我国学者、原中国预防医学科学院田凤调教授于1988年提出的,集古典参数统计与近代非参数统计各自优点于一体的统计分析方法,它不仅适用于四格表资料的综合评价,也适用于行×列表资料的综合评价,同时也适用于计量资料和分类资料的综合评价。

灰色预测是就灰色系统所做的预测

灰色预测是一种对含有不确定因素的系统进行预测的方法。灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。其用等时距观测到的反应预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。

回归分析预测法,是在分析市场现象自变量和因变量之间相关关系的基础上,建立变量之间的回归方程,并将回归方程作为预测模型,根据自变量在预测期的数量变化来预测因变量关系大多表现为相关关系,因此,回归分析预测法是一种重要的市场预测方法,当我们在对市场现象未来发展状况和水平进行预测时,如果能将影响市场预测对象的主要因素找到,并且能够取得其数量资料,就可以采用回归分析预测法进行预测。它是一种具体的、行之有效的、实用价值很高的常用市场预测方法,常用于中短期预测。

包含未知函数的差分及自变数的方程。在求微分方程 的数值解时,常把其中的微分用相应的差分来近似,所导出的方程就是差分方程。通过解差分方程来求微分方程的近似解,是连续问题离散化 的一个例子。

马尔可夫预测法主要用于市场占有率的预测和销售期望利润的预测。就是一种预测事件发生的概率的方法。马尔科夫预测讲述了有关随机变量 、 随机函数与随机过程。

逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。

中文名 神经网络算法 外文名 Neural network algorithm

D. 16种常用的数据分析方法汇总

一、描述统计

描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。

1、缺失值填充:常用方法:剔除法、均值法、最小邻居法、比率回归法、决策树法。

2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W检验、动差法。

二、假设检验

1、参数检验

参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验 。

1)U验  使用条件:当样本含量n较大时,样本值符合正态分布

2)T检验 使用条件:当样本含量n较小时,样本值符合正态分布

A  单样本t检验:推断该样本来自的总体均数μ与已知的某一总体均数μ0 (常为理论值或标准值)有无差别;

B  配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似;

C 两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。

2、非参数检验

非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。

适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。

A 虽然是连续数据,但总体分布形态未知或者非正态;

B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下;

主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。

三、信度分析

检査测量的可信度,例如调查问卷的真实性。

分类:

1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度

2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。

四、列联表分析

用于分析离散变量或定型变量之间是否存在相关。

对于二维表,可进行卡方检验,对于三维表,可作Mentel-Hanszel分层分析。

列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。

五、相关分析

研究现象之间是否存在某种依存关系,对具体有依存关系的现象探讨相关方向及相关程度。

1、单相关: 两个因素之间的相关关系叫单相关,即研究时只涉及一个自变量和一个因变量;

2、复相关 :三个或三个以上因素的相关关系叫复相关,即研究时涉及两个或两个以上的自变量和因变量相关;

3、偏相关:在某一现象与多种现象相关的场合,当假定其他变量不变时,其中两个变量之间的相关关系称为偏相关。

六、方差分析

使用条件:各样本须是相互独立的随机样本;各样本来自正态分布总体;各总体方差相等。

分类

1、单因素方差分析:一项试验只有一个影响因素,或者存在多个影响因素时,只分析一个因素与响应变量的关系

2、多因素有交互方差分析:一顼实验有多个影响因素,分析多个影响因素与响应变量的关系,同时考虑多个影响因素之间的关系

3、多因素无交互方差分析:分析多个影响因素与响应变量的关系,但是影响因素之间没有影响关系或忽略影响关系

4、协方差分祈:传统的方差分析存在明显的弊端,无法控制分析中存在的某些随机因素,使之影响了分祈结果的准确度。协方差分析主要是在排除了协变量的影响后再对修正后的主效应进行方差分析,是将线性回归与方差分析结合起来的一种分析方法,

七、回归分析

分类:

1、一元线性回归分析:只有一个自变量X与因变量Y有关,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布。

2、多元线性回归分析

使用条件:分析多个自变量与因变量Y的关系,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布 。

1)变呈筛选方式:选择最优回归方程的变里筛选法包括全横型法(CP法)、逐步回归法,向前引入法和向后剔除法

2)横型诊断方法:

A 残差检验: 观测值与估计值的差值要艰从正态分布

B 强影响点判断:寻找方式一般分为标准误差法、Mahalanobis距离法

C 共线性诊断:

诊断方式:容忍度、方差扩大因子法(又称膨胀系数VIF)、特征根判定法、条件指针CI、方差比例

处理方法:增加样本容量或选取另外的回归如主成分回归、岭回归等

3、Logistic回归分析

线性回归模型要求因变量是连续的正态分布变里,且自变量和因变量呈线性关系,而Logistic回归模型对因变量的分布没有要求,一般用于因变量是离散时的情况

分类:

Logistic回归模型有条件与非条件之分,条件Logistic回归模型和非条件Logistic回归模型的区别在于参数的估计是否用到了条件概率。

4、其他回归方法 非线性回归、有序回归、Probit回归、加权回归等

八、聚类分析

样本个体或指标变量按其具有的特性进行分类,寻找合理的度量事物相似性的统计量。

1、性质分类:

Q型聚类分析:对样本进行分类处理,又称样本聚类分祈 使用距离系数作为统计量衡量相似度,如欧式距离、极端距离、绝对距离等

R型聚类分析:对指标进行分类处理,又称指标聚类分析 使用相似系数作为统计量衡量相似度,相关系数、列联系数等

2、方法分类:

1)系统聚类法: 适用于小样本的样本聚类或指标聚类,一般用系统聚类法来聚类指标,又称分层聚类

2)逐步聚类法 :适用于大样本的样本聚类

3)其他聚类法 :两步聚类、K均值聚类等

九、判别分析

1、判别分析:根据已掌握的一批分类明确的样品建立判别函数,使产生错判的事例最少,进而对给定的一个新样品,判断它来自哪个总体

2、与聚类分析区别

1)聚类分析可以对样本逬行分类,也可以对指标进行分类;而判别分析只能对样本

2)聚类分析事先不知道事物的类别,也不知道分几类;而判别分析必须事先知道事物的类别,也知道分几类

3)聚类分析不需要分类的历史资料,而直接对样本进行分类;而判别分析需要分类历史资料去建立判别函数,然后才能对样本进行分类

3、进行分类 :

1)Fisher判别分析法 :

以距离为判别准则来分类,即样本与哪个类的距离最短就分到哪一类, 适用于两类判别;

以概率为判别准则来分类,即样本属于哪一类的概率最大就分到哪一类,适用于

适用于多类判别。

2)BAYES判别分析法 :

BAYES判别分析法比FISHER判别分析法更加完善和先进,它不仅能解决多类判别分析,而且分析时考虑了数据的分布状态,所以一般较多使用;

十、主成分分析

将彼此梠关的一组指标变适转化为彼此独立的一组新的指标变量,并用其中较少的几个新指标变量就能综合反应原多个指标变量中所包含的主要信息 。

十一、因子分析

一种旨在寻找隐藏在多变量数据中、无法直接观察到却影响或支配可测变量的潜在因子、并估计潜在因子对可测变量的影响程度以及潜在因子之间的相关性的一种多元统计分析方法

与主成分分析比较:

相同:都能够起到済理多个原始变量内在结构关系的作用

不同:主成分分析重在综合原始变适的信息.而因子分析重在解释原始变量间的关系,是比主成分分析更深入的一种多元统计方法

用途:

1)减少分析变量个数

2)通过对变量间相关关系探测,将原始变量进行分类

十二、时间序列分析

动态数据处理的统计方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题;时间序列通常由4种要素组成:趋势、季节变动、循环波动和不规则波动。

主要方法:移动平均滤波与指数平滑法、ARIMA横型、量ARIMA横型、ARIMAX模型、向呈自回归横型、ARCH族模型

十三、生存分析

用来研究生存时间的分布规律以及生存时间和相关因索之间关系的一种统计分析方法

1、包含内容:

1)描述生存过程,即研究生存时间的分布规律

2)比较生存过程,即研究两组或多组生存时间的分布规律,并进行比较

3)分析危险因素,即研究危险因素对生存过程的影响

4)建立数学模型,即将生存时间与相关危险因素的依存关系用一个数学式子表示出来。

2、方法:

1)统计描述:包括求生存时间的分位数、中数生存期、平均数、生存函数的估计、判断生存时间的图示法,不对所分析的数据作出任何统计推断结论

2)非参数检验:检验分组变量各水平所对应的生存曲线是否一致,对生存时间的分布没有要求,并且检验危险因素对生存时间的影响。

A 乘积极限法(PL法)

B 寿命表法(LT法)

3)半参数横型回归分析:在特定的假设之下,建立生存时间随多个危险因素变化的回归方程,这种方法的代表是Cox比例风险回归分析法

4)参数模型回归分析:已知生存时间服从特定的参数横型时,拟合相应的参数模型,更准确地分析确定变量之间的变化规律

十四、典型相关分析

相关分析一般分析两个变里之间的关系,而典型相关分析是分析两组变里(如3个学术能力指标与5个在校成绩表现指标)之间相关性的一种统计分析方法。

典型相关分析的基本思想和主成分分析的基本思想相似,它将一组变量与另一组变量之间单变量的多重线性相关性研究转化为对少数几对综合变量之间的简单线性相关性的研究,并且这少数几对变量所包含的线性相关性的信息几乎覆盖了原变量组所包含的全部相应信息。

十五、R0C分析

R0C曲线是根据一系列不同的二分类方式(分界值或决定阈).以真阳性率(灵敏度)为纵坐标,假阳性率(1-特异度)为横坐标绘制的曲线

用途:

1、R0C曲线能很容易地査出任意界限值时的对疾病的识别能力

用途

2、选择最佳的诊断界限值。R0C曲线越靠近左上角,试验的准确性就越高;

3、两种或两种以上不同诊断试验对疾病识别能力的比较,一股用R0C曲线下面积反映诊断系统的准确性。

十六、其他分析方法

多重响应分析、距离分祈、项目分祈、对应分祈、决策树分析、神经网络、系统方程、蒙特卡洛模拟等。

E. 多元统计!!!急求!

1. 因子分析模型

因子分析法是从研究变量内部相关的依赖关系出发,把一些具有错综复杂关系的变量归结为少数几个综合因子的一种多变量统计分析方法。它的基本思想是将观测变量进行分类,将相关性较高,即联系比较紧密的分在同一类中,而不同类变量之间的相关性则较低,那么每一类变量实际上就代表了一个基本结构,即公共因子。对于所研究的问题就是试图用最少个数的不可测的所谓公共因子的线性函数与特殊因子之和来描述原来观测的每一分量。

因子分析的基本思想:
把每个研究变量分解为几个影响因素变量,将每个原始变量分解成两部分因素,一部分是由所有变量共同具有的少数几个公共因子组成的,另一部分是每个变量独自具有的因素,即特殊因子

因子分析模型描述如下:

(1)X = (x1,x2,…,xp)¢是可观测随机向量,均值向量E(X)=0,协方差阵Cov(X)=∑,且协方差阵∑与相关矩阵R相等(只要将变量标准化即可实现)。

(2)F = (F1,F2,…,Fm)¢ (m<p)是不可测的向量,其均值向量E(F)=0,协方差矩阵Cov(F) =I,即向量的各分量是相互独立的。

(3)e = (e1,e2,…,ep)¢与F相互独立,且E(e)=0, e的协方差阵∑是对角阵,即各分量e之间是相互独立的,则模型:

x1 = a11F1+ a12F2 +…+a1mFm + e1

x2 = a21F1+a22F2 +…+a2mFm + e2

………

xp = ap1F1+ ap2F2 +…+apmFm + ep

称为因子分析模型,由于该模型是针对变量进行的,各因子又是正交的,所以也称为R型正交因子模型。

其矩阵形式为: x =AF + e .

其中:

x=,A=,F=,e=

这里,

(1)m £ p;

(2)Cov(F,e)=0,即F和e是不相关的;

(3)D(F) = Im ,即F1,F2,…,Fm不相关且方差均为1;

D(e)=,即e1,e2,…,ep不相关,且方差不同。

我们把F称为X的公共因子或潜因子,矩阵A称为因子载荷矩阵,e 称为X的特殊因子。

A = (aij),aij为因子载荷。数学上可以证明,因子载荷aij就是第i变量与第j因子的相关系数,反映了第i变量在第j因子上的重要性。

2. 模型的统计意义

模型中F1,F2,…,Fm叫做主因子或公共因子,它们是在各个原观测变量的表达式中都共同出现的因子,是相互独立的不可观测的理论变量。公共因子的含义,必须结合具体问题的实际意义而定。e1,e2,…,ep叫做特殊因子,是向量x的分量xi(i=1,2,…,p)所特有的因子,各特殊因子之间以及特殊因子与所有公共因子之间都是相互独立的。模型中载荷矩阵A中的元素(aij)是为因子载荷。因子载荷aij是xi与Fj的协方差,也是xi与Fj的相关系数,它表示xi依赖Fj的程度。可将aij看作第i个变量在第j公共因子上的权,aij的绝对值越大(|aij|£1),表明xi与Fj的相依程度越大,或称公共因子Fj对于xi的载荷量越大。为了得到因子分析结果的经济解释,因子载荷矩阵A中有两个统计量十分重要,即变量共同度和公共因子的方差贡献。

因子载荷矩阵A中第i行元素之平方和记为hi2,称为变量xi的共同度。它是全部公共因子对xi的方差所做出的贡献,反映了全部公共因子对变量xi的影响。hi2大表明x的第i个分量xi对于F的每一分量F1,F2,…,Fm的共同依赖程度大。

将因子载荷矩阵A的第j列( j =1,2,…,m)的各元素的平方和记为gj2,称为公共因子Fj对x的方差贡献。gj2就表示第j个公共因子Fj对于x的每一分量xi(i= 1,2,…,p)所提供方差的总和,它是衡量公共因子相对重要性的指标。gj2越大,表明公共因子Fj对x的贡献越大,或者说对x的影响和作用就越大。如果将因子载荷矩阵A的所有gj2 ( j =1,2,…,m)都计算出来,使其按照大小排序,就可以依此提炼出最有影响力的公共因子。

3. 因子旋转

建立因子分析模型的目的不仅是找出主因子,更重要的是知道每个主因子的意义,以便对实际问题进行分析。如果求出主因子解后,各个主因子的典型代表变量不很突出,还需要进行因子旋转,通过适当的旋转得到比较满意的主因子。

旋转的方法有很多,正交旋转(orthogonal rotation)和斜交旋转(oblique rotation)是因子旋转的两类方法。最常用的方法是最大方差正交旋转法(Varimax)。进行因子旋转,就是要使因子载荷矩阵中因子载荷的平方值向0和1两个方向分化,使大的载荷更大,小的载荷更小。因子旋转过程中,如果因子对应轴相互正交,则称为正交旋转;如果因子对应轴相互间不是正交的,则称为斜交旋转。常用的斜交旋转方法有Promax法等。

4.因子得分

因子分析模型建立后,还有一个重要的作用是应用因子分析模型去评价每个样品在整个模型中的地位,即进行综合评价。例如地区经济发展的因子分析模型建立后,我们希望知道每个地区经济发展的情况,把区域经济划分归类,哪些地区发展较快,哪些中等发达,哪些较慢等。这时需要将公共因子用变量的线性组合来表示,也即由地区经济的各项指标值来估计它的因子得分。

设公共因子F由变量x表示的线性组合为:

Fj = uj1 xj1+ uj2 xj2+…+ujpxjp j=1,2,…,m

该式称为因子得分函数,由它来计算每个样品的公共因子得分。若取m=2,则将每个样品的p个变量代入上式即可算出每个样品的因子得分F1和F2,并将其在平面上做因子得分散点图,进而对样品进行分类或对原始数据进行更深入的研究。

但因子得分函数中方程的个数m小于变量的个数p,所以并不能精确计算出因子得分,只能对因子得分进行估计。估计因子得分的方法较多,常用的有回归估计法,Bartlett估计法,Thomson估计法。

(1)回归估计法

F = X b = X (X ¢X)-1A¢ = XR-1A¢ (这里R为相关阵,且R = X ¢X )。

(2)Bartlett估计法

Bartlett估计因子得分可由最小二乘法或极大似然法导出。

F = [(W-1/2A)¢ W-1/2A]-1(W-1/2A)¢ W-1/2X = (A¢W-1A)-1A¢W-1X

(3)Thomson估计法

在回归估计法中,实际上是忽略特殊因子的作用,取R = X ¢X,若考虑特殊因子的作用,此时R = X ¢X+W,于是有:

F = XR-1A¢ = X (X ¢X+W)-1A¢

这就是Thomson估计的因子得分,使用矩阵求逆算法(参考线性代数文献)可以将其转换为:

F = XR-1A¢ = X (I+A¢W-1A)-1W-1A¢

5. 因子分析的步骤

因子分析的核心问题有两个:一是如何构造因子变量;二是如何对因子变量进行命名解释。因此,因子分析的基本步骤和解决思路就是围绕这两个核心问题展开的。

(i)因子分析常常有以下四个基本步骤:

(1)确认待分析的原变量是否适合作因子分析。

(2)构造因子变量。

(3)利用旋转方法使因子变量更具有可解释性。

(4)计算因子变量得分。

(ii)因子分析的计算过程:

(1)将原始数据标准化,以消除变量间在数量级和量纲上的不同。

(2)求标准化数据的相关矩阵;

(3)求相关矩阵的特征值和特征向量;

(4)计算方差贡献率与累积方差贡献率;

(5)确定因子:

设F1,F2,…, Fp为p个因子,其中前m个因子包含的数据信息总量(即其累积贡献率)不低于80%时,可取前m个因子来反映原评价指标;

(6)因子旋转:

若所得的m个因子无法确定或其实际意义不是很明显,这时需将因子进行旋转以获得较为明显的实际含义。

(7)用原指标的线性组合来求各因子得分:

采用回归估计法,Bartlett估计法或Thomson估计法计算因子得分。

(8)综合得分

以各因子的方差贡献率为权,由各因子的线性组合得到综合评价指标函数。

F = (w1F1+w2F2+…+wmFm)/(w1+w2+…+wm )

此处wi为旋转前或旋转后因子的方差贡献率。

(9)得分排序:利用综合得分可以得到得分名次。

在采用多元统计分析技术进行数据处理、建立宏观或微观系统模型时,需要研究以下几个方面的问题:

· 简化系统结构,探讨系统内核。可采用主成分分析、因子分析、对应分析等方法,在众多因素中找出各个变量最佳的子集合,从子集合所包含的信息描述多变量的系统结果及各个因子对系统的影响。“从树木看森林”,抓住主要矛盾,把握主要矛盾的主要方面,舍弃次要因素,以简化系统的结构,认识系统的内核。

· 构造预测模型,进行预报控制。在自然和社会科学领域的科研与生产中,探索多变量系统运动的客观规律及其与外部环境的关系,进行预测预报,以实现对系统的最优控制,是应用多元统计分析技术的主要目的。在多元分析中,用于预报控制的模型有两大类。一类是预测预报模型,通常采用多元线性回归或逐步回归分析、判别分析、双重筛选逐步回归分析等建模技术。另一类是描述性模型,通常采用聚类分析的建模技术。

· 进行数值分类,构造分类模式。在多变量系统的分析中,往往需要将系统性质相似的事物或现象归为一类。以便找出它们之间的联系和内在规律性。过去许多研究多是按单因素进行定性处理,以致处理结果反映不出系统的总的特征。进行数值分类,构造分类模式一般采用聚类分析和判别分析技术。

如何选择适当的方法来解决实际问题,需要对问题进行综合考虑。对一个问题可以综合运用多种统计方法进行分析。例如一个预报模型的建立,可先根据有关生物学、生态学原理,确定理论模型和试验设计;根据试验结果,收集试验资料;对资料进行初步提炼;然后应用统计分析方法(如相关分析、逐步回归分析、主成分分析等)研究各个变量之间的相关性,选择最佳的变量子集合;在此基础上构造预报模型,最后对模型进行诊断和优化处理,并应用于生产实际。
Rotated Component Matrix,就是经转轴后的因子负荷矩阵,
当你设置了因子转轴后,便会产生这结果。
转轴的是要得到清晰的负荷形式,以便研究者进行因子解释及命名。

SPSS的Factor Analysis对话框中,有个Rotation钮,点击便会弹出Rotation对话框,
其中有5种因子旋转方法可选择:

1.最大变异法(Varimax):使负荷量的变异数在因子内最大,亦即,使每个因子上具有最高载荷的变量数最少。

2.四次方最大值法(Quartimax):使负荷量的变异数在变项内最大,亦即,使每个变量中需要解释的因子数最少。

3.相等最大值法(Equamax):综合前两者,使负荷量的变异数在因素内与变项内同时最大。

4.直接斜交转轴法(Direct Oblimin):使因素负荷量的差积(cross-procts)最小化。

5.Promax 转轴法:将直交转轴(varimax)的结果再进行有相关的斜交转轴。因子负荷量取2,4,6次方以产生接近0但不为0的值,借以找出因子间的相关,但仍保有最简化因素的特性。

上述前三者属于“直交(正交)转轴法”(Orthogonal Rotations),在直交转轴法中,因子与因子之间没有相关,因子轴之间的夹角等于90 度。后两者属于“斜交转轴”(oblique rotations),表示因子与因子之间彼此有某种程度的相关,因素轴之间的夹角不是90度。

直交转轴法的优点是因子之间提供的讯息不会重叠,受访者在某一个因子的分數与在其他因子的分數,彼此独立互不相关;缺点是研究迫使因素之间不相关,但这种情况在实际的情境中往往并不常存在。至于使用何种转轴方式,须视乎研究题材、研究目的及相关理论,由研究者自行设定。

在根据结果解释因子时,除了要看因子负荷矩阵中,因子对哪些变量呈高负荷,对哪些变量呈低负荷,还须留意之前所用的转轴法代表的意义。

2,主成分分析(principal component analysis)

将多个变量通过线性变换以选出较少个数重要变量的一种多元统计分析方法。又称主分量分析。在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。但是,在用统计分析方法研究这个多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。主成分分析首先是由K.皮尔森对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。
(1)主成分分析的原理及基本思想。
原理:设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的总和变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上处理降维的一种方法。
基本思想:主成分分析是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。通常数学上的处理就是将原来P个指标作线性组合,作为新的综合指标。最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现再F2中,用数学语言表达就是要求Cov(F1, F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,……,第P个主成分。
(2)步骤
Fp=a1mZX1+a2mZX2+……+apmZXp
其中a1i, a2i, ……,api(i=1,……,m)为X的协方差阵∑的特征值多对应的特征向量,ZX1, ZX2, ……, ZXp是原始变量经过标准化处理的值,因为在实际应用中,往往存在指标的量纲不同,所以在计算之前须先消除量纲的影响,而将原始数据标准化,本文所采用的数据就存在量纲影响[注:本文指的数据标准化是指Z标准化]。
A=(aij)p×m=(a1,a2,…am,),Rai=λiai,R为相关系数矩阵,λi、ai是相应的特征值和单位特征向量,λ1≥λ2≥…≥λp≥0 。
进行主成分分析主要步骤如下:
1. 指标数据标准化(SPSS软件自动执行);
2. 指标之间的相关性判定;
3. 确定主成分个数m;
4. 主成分Fi表达式;
5. 主成分Fi命名;

选用以上两种方法时的注意事项如下:
1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成个变量的线性组合。

2、主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。

3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。

4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不同的因子。

5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同。在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分。和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势。大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于使用因子分析,并且借助旋转技术帮助更好解释。而如果想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析。当然,这中情况也可以使用因子得分做到。所以这中区分不是绝对的。

总得来说,主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。主成分分析一般很少单独使用:a,了解数据。(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。(rece dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。

在算法上,主成分分析和因子分析很类似,不过,在因子分析中所采用的协方差矩阵的对角元素不在是变量的方差,而是和变量对应的共同度(变量方差中被各因子所解释的部分)。

(1)了解如何通过SPSS因子分析得出主成分分析结果。首先,选择SPSS中Analyze-Data Rection-Factor…,在Extraction…对话框中选择主成分方法提取因子,选择好因子提取个数标准后点确定完成因子分析。打开输出结果窗口后找到Total Variance Explained表和Component Matrix表。将Component Matrix表中第一列数据分别除以Total Variance Explained表中第一特征根值的开方得到第一主成分表达式系数,用类似方法得到其它主成分表达式。打开数据窗口,点击菜单项的Analyze-Descriptive Statistics-Descriptives…,在打开的新窗口下方构选Save standardized values as variables,选定左边要分析的变量。点击Options,只构选Means,点确定后既得待分析变量的标准化新变量。

选择菜单项Transform-Compute…,在Target Variable中输入:Z1(主成分变量名,可以自己定义),在Numeric Expression中输入例如:0.412(刚才主成分表达式中的系数)*Z人口数(标准化过的新变量名)+0.212*Z第一产业产值+…,点确定即得到主成分得分。通过对主成分得分的排序即可进行各个个案的综合评价。很显然,这里的过程分为四个步骤:

Ⅰ.选主成分方法提取因子进行因子分析。

Ⅱ.计算主成分表达式系数。

Ⅲ.标准化数据。

Ⅳ.计算主成分得分。

我们的程序也将依该思路展开开发。

(2)对为何要将Component Matrix表数据除以特征根开方的解释

我们学过主成分分析和因子分析后不难发现,原来因子分析时的因子载荷矩阵就是主成分分析特征向量矩阵乘以对应特征根开方值的对角阵。而Component Matrix表输出的恰是因子载荷矩阵,所以求主成分特征向量自然是上面描述的逆运算。

成功启动程序后选定分析变量和主成分提取方法即可在数据窗口输出得分和在OUTPUT窗口输出主成分表达式。

3,聚类分析(Cluster Analysis)

聚类分析是直接比较各事物之间的性质,将性质相近的归为一类,将性质差别较大的归入不同的类的分析技术 。

在市场研究领域,聚类分析主要应用方面是帮助我们寻找目标消费群体,运用这项研究技术,我们可以划分出产品的细分市场,并且可以描述出各细分市场的人群特征,以便于客户可以有针对性的对目标消费群体施加影响,合理地开展工作。

4.判别分析(Discriminatory Analysis)

判别分析(Discriminatory Analysis)的任务是根据已掌握的1批分类明确的样品,建立较好的判别函数,使产生错判的事例最少,进而对给定的1个新样品,判断它来自哪个总体。根据资料的性质,分为定性资料的判别分析和定量资料的判别分析;采用不同的判别准则,又有费歇、贝叶斯、距离等判别方法。

费歇(FISHER)判别思想是投影,使多维问题简化为一维问题来处理。选择一个适当的投影轴,使所有的样品点都投影到这个轴上得到一个投影值。对这个投影轴的方向的要求是:使每一类内的投影值所形成的类内离差尽可能小,而不同类间的投影值所形成的类间离差尽可能大。贝叶斯(BAYES)判别思想是根据先验概率求出后验概率,并依据后验概率分布作出统计推断。所谓先验概率,就是用概率来描述人们事先对所研究的对象的认识的程度;所谓后验概率,就是根据具体资料、先验概率、特定的判别规则所计算出来的概率。它是对先验概率修正后的结果。

距离判别思想是根据各样品与各母体之间的距离远近作出判别。即根据资料建立关于各母体的距离判别函数式,将各样品数据逐一代入计算,得出各样品与各母体之间的距离值,判样品属于距离值最小的那个母体。

5.对应分析(Correspondence Analysis)

对应分析是一种用来研究变量与变量之间联系紧密程度的研究技术。

运用这种研究技术,我们可以获取有关消费者对产品品牌定位方面的图形,从而帮助您及时调整营销策略,以便使产品品牌在消费者中能树立起正确的形象。

这种研究技术还可以用于检验广告或市场推广活动的效果,我们可以通过对比广告播出前或市场推广活动前与广告播出后或市场推广活动后消费者对产品的不同认知图来看出广告或市场推广活动是否成功的向消费者传达了需要传达的信息。

F. 统计分析方法有哪些


统计分析方法有以下:
1、描述性统计分析方法。描述性统计分析方法是指运用制表和分类和图形概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。
2、相关分析方法。相关分析方法是研究现象之间是否存在某种依存关系,对具体有依存关系的现象探讨相关方向及相关程度。
3、方差分析方法。方差分析是用来分析一项实验的影响因素与相应变量的关系,同时考虑多个影响因素之间的关系。
4、列联表分析方法。列联表分析是用于分析离散变量或定型变量之间是否存在相关。
5、主成分分析方法。主成分分析方法是将彼此梠关的一组指标变适转化为彼此独立的一组新的指标变量,并用其中较少的几个新指标变量就能综合反应原多个指标变量中所包含的主要信息。
阅读全文

与下列属于多变量统计分析的方法是相关的资料

热点内容
简便叠衣服阔腿裤的方法省空间 浏览:493
议论文要写解决方法吗 浏览:920
雨伞怎么折是最简单的方法 浏览:848
vlookup函数查找出错解决方法 浏览:683
经纬仪测绘法测地图的方法步骤 浏览:727
多种方法测量微小长度的变化量 浏览:25
手机号算年龄方法用的什么基数 浏览:939
柠檬汁最简单的方法怎么做 浏览:494
18米高散热器安装连接方法 浏览:430
家里养猫最佳方法 浏览:134
保险费率厘定方法中最常用的方法 浏览:883
堆堆的制作方法视频 浏览:660
移民的解决方法 浏览:912
藏手机游戏方法 浏览:615
清理手机灰尘的好方法视频 浏览:388
烟草花叶病毒解决方法 浏览:839
供水器水压低解决方法 浏览:489
马兰头食用方法 浏览:832
贵州污泥的检测方法 浏览:303
腰椎锻炼飞燕方法 浏览:883