Ⅰ 市场调研和数据分析的方式和方法
市场调研和数据分析的方式和方法
一、产品经理为什么要做市场调研?调研的目的是什么?我们在做市场调研前,必须有一个自己的调研思路:我们要调研的对象,需要收集的数据,需要达到的效果等。只有有了明确的目标,才能获得更加有效的数据。 1、通过调研了解市场需求、确定目标用户、确定产品核心,为了更好的制订MRD; 2、为领导在会议上PK提供论据; 3、提高产品的销售决策质量、解决存在于产品销售中的问题或寻找机会等而系统地、客观地识别、收集、分析和传播营销信息,及时掌握一手资源; 4、验证我们定的目标客户是不是我们想要的,目标用户想要什么样的产品或服务; 5、了解我们能不能满足目标用户的需求并且乐于满足目标用户的需求; 6、找准产品机会缺口,然后衡量各种因素,制定产品战略线路; 7、调研到最后,目标越明确,需求确明确,也就会觉得,产品越难做,难以打开市场等; 8、对于全新的产品,调研前PM必须先自己有一个思路,然后通过调研去验证自己的想法的可行性。 二、市场调研的方式方法有哪些?怎样确定调研的维度? 1、问卷调查、用户AB测试、焦点访谈、田野调研、用户访谈、用户日志、入户观察、网上有奖调查; 2、做人物角色分析:设置用户场景、用户角色进行模拟分析; 3、情况推测分析; 4、调研的维度主要从战略层、范围层、结构层、框架层、视觉层来展开(不同的产品从不同的层次来确定调研的维度) 三、如何整理市场调研的数据? 对收集到的调研数据,我们需要整理出那些有效的数据,对于无效数据果断丢弃。对有效数据进行细致的处理、分析。 通过市场调研,我们收集了不少的数据,这些数据都是用户最直接的对产品的某种需求的体现。作为产品经理,我们视这些数据为宝贝,我们需要将这些数据进行整理,让他们变为珍宝。那我们该如何整理呢? 1、将规范的数据按照维度整理、录入,然后进行建模;不规范的数据的话就必须得自己先通过一些定性的处理,让它变得规范,然后再用工具进行分析; 2、封闭性的问题,设置选项归类即可。开放性的问题,建议还是先录下来,然后再头脑风暴整理出有用的东西; 3定性的,焦点访谈和深访,都可以录音,在事后可以形成访谈记录;焦点访谈的过程中,可以以卡片的形式或者其他的形式让用户做选择题,可以获取少量的有数据性的东西,其他的更多的是观点、方向性的,这个需要在整理访谈记录的时候根据问题来归纳整理; 4、深度访谈的数据整理,我们以前会做头脑风暴,建立很多个用户模型,强行量化这些数据。这个方法比较有效,特别在做人群研究的时候。 四、如何书写市场调研报告? 对整理后的数据,我们最终需要形成书面的市场调研文档报告,以最直观的方式呈现给我们的BOSS,从而获得老板对产品的支持。 1、对市场调研的数据分析后进行的说明总结,用图表或图形的形式最直观呈现; 2、分析用户当前现状,用户对产品的需求点;
以上是小编为大家分享的关于市场调研和数据分析的方式和方法的相关内容,更多信息可以关注环球青藤分享更多干货
Ⅱ 常用的8种数据分析方法
常用的8种数据分析方法如下:
1、逻辑树分析方法。通过逻辑树分析方法,可以把一个复杂的问题变成容易处理的子问题。应用场景:年度计划,拆解成技能学习、读书、健身、旅行等这些子问题
2、PEST分析方法—行业分析。PEST分析方法是对公司发展宏观环境的分析,所以经常用于行业分析。通常是从政策、经济、社会和技术这四个方面来分析的。应用场答瞎亏景:职业规划、行业分析、产品报告。
3、多维度拆解分析方法。光看整体结果时,神橡看不到内部实际的差异,所以将复杂的问题拆解成简单问题,指标构成来拆解从、业务流程来拆解。应用场景: 考察公众号、网络、头条哪个渠道用户来源多。
4、比分析方法—通过两个对比得出最优结果。想要进行对比分析,首先要弄清楚两个问题:和谁比,如清神何比较。
这一过程是质量管理体系的支持过程。在产品的整个寿命周期,包括从市场调研到售后服务和最终处置的各个过程都需要适当运用数据分析过程,以提升有效性。数据分析过程的主要活动由识别信息需求、收集数据、分析数据、评价并改进数据分析的有效性组成。
例如,设计人员在开始一个新的设计以前,要通过广泛的设计调查,分析所得数据以判定设计方向,因此数据分析在工业设计中具有极其重要的地位。
Ⅲ 数据分析的分析方法有哪些
数据分析的分析方法有:
1、列表法
将数据按一定规律用列表方式表达出来,是记录和处理最常用的方法。表格的设计要求对应关系清楚,简单明了,有利于发现相关量之间的相关关系;此外还要求在标题栏中注明各个量的名称、符号、数量级和单位等:根据需要还可以列出除原始数据以外的计算栏目和统计栏目等。
2、作图法
作图法可以最醒目地表达各个物理量间的变化关系。从图线上可以简便求出实验需要的某些结果,还可以把某些复杂的函数关系,通过一定的变换用图形表示出来。
图表和图形的生成方式主要有两种:手动制表和用程序自动生成,其中用程序制表是通过相应的软件,例如SPSS、Excel、MATLAB等。将调查的数据输入程序中,通过对这些软件进行操作,得出最后结果,结果可以用图表或者图形的方式表现出来。
图形和图表可以直接反映出调研结果,这样大大节省了设计师的时间,帮助设计者们更好地分析和预测市场所需要的产品,为进一步的设计做铺垫。同时这些分析形式也运用在产品销售统计中,这样可以直观地给出最近的产品销售情况,并可以及时地分析和预测未来的市场销售情况等。所以数据分析法在工业设计中运用非常广泛,而且是极为重要的。
(3)调研数据分析方法扩展阅读:
数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,将它们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。
数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。
Ⅳ 调研报告大数据分析怎么做
1、明确思路
明确数据分析的目的以及思路是确保数据分析过程有效进行的首要条件。它作用的是可以为数据的收集、处理及分析提供清晰的指引方向。可以说思路是整个分析流程的起点。首先目的不明确则会导致方向性的错误。当明确目的后,就要建分析框架,把分析目的分解成若干个不同的分析要点,即如何具体开展数据分析,需要从哪几个角度进行分析,采用哪些分析指标。
2、收集数据
收集数据是按照确定的数据分析框架收集相关数据的过程,它为数据分析提供了素材和依据。这里所说的数据包括第一手数据与第二手数据,第一手数据主要指可直接获取的数据,第二手数据主要指经过加工整理后得到的数据。
3、处理数据
处理数据是指对收集到的数据进行加工整理,形成适合数据分析的样式,它是数据分析前必不可少的阶段。数据处理的基本目的是从大量的、杂乱无章、难以理解的数据中,抽取并推导出对解决问题有价值、有意义的数据。数据处理主要包括数据清洗、数据转化、数据提取、数据计算等处理方法。
4、分析数据
分析数据是指用适当的分析方法及工具,对处理过的数据进行分析,提取有价值的信息,形成有效结论的过程。由于数据分析多是通过软件来完成的,这就要求数据分析师不仅要掌握各种数据分析方法,还要熟悉数据分析软件的操作。而数据挖掘其实是一种高级的数据分析方法,就是从大量的数据中挖掘出有用的信息,它是根据用户的特定要求,从浩如烟海的数据中找出所需的信息,以满足用户的特定需求。
5、展现数据
一般情况下,数据是通过表格和图形的方式来呈现的,我们常说用图表说话就是这个意思。常用的数据图表包括饼图、柱形图、条形图、折线图、散点图、雷达图等,当然可以对这些图表进一步整理加工,使之变为我们所需要的图形。
6、撰写报告
数据分析报告其实是对整个数据分析过程的一个总结与呈现。通过报告,把数据分析的起因、过程、结果及建议完整地呈现出来,供决策者参考。一份好的数据分析报告,首先需要有一个好的分析框架,并且图文并茂,层次明晰,能够让阅读者一目了然。另外,数据分析报告需要有明确的结论,没有明确结论的分析称不上分析,同时也失去了报告的意义,因为我们最初就是为寻找或者求证一个结论才进行分析的,所以千万不要舍本求末。最后,好的分析报告一定要有建议或解决方案。
Ⅳ 数据分析的方法
数据分析通常包括以下几个步骤:
数据收集:获取需要分析的数据,可以是从各种数据源收集数据或者自己采集数据。
数据清洗:对数据进行清理和整理,包括去除重复数据、缺失数据、异常数据、格式转换等操作,使数据能够被更好地分析和利用。
数据探索:对数据进行可视化展示和统计分析,探索数据的分布、特征、关系和趋势等。
数据建模:根据数据分析的结果,利用统计学方法或机器学习算法构建模型,用于预测和分析未来的数据情况。
数据解释:将数据分析的结果进行解释和应用,为决策提供支持和参考。
而对于更具体的数据分析方法,我将依次列举:
描述性统计:用于描述数据的分布、中心位置、离散程度和对称性等特征。常用的描述性统计方法包括均值、中位数、标准差、偏度、峰度等。
假设检验:用于检验某个假链旦设是否成立,例如检验两组数据之间的差异是否显着。常用的假设检验方法包括t检验、ANOVA分析、卡方检验等。
相关分析:用于分析两个或多个变量之间的关系。常用的相关分析方法包括皮尔逊相关系数、斯皮尔曼相关系数、卡方检验等。
回归分析:用于研究一个或多个自变量与一个因变量之间的关系。常用的回归分析方法包括线性回归、逻辑回归、多元回归等。
聚类分析:用于将数据集中的样本划分为若干个互不重叠的子集,每个子集内部的样本相似度较高,不同子集之间的样本相似度较低。常用的聚类分析方法包括K均值聚类、层次聚类等。
分类分析:用于根据已知样本的特征,对未知样本进行分类。常用的分类分析方法包括决策树、支持向量机、朴素贝叶斯等。
时间序列分析:用于研究时间序列数据的规律和趋势,常用于经济、金融和股市等领域。常用的时间序列分析方法包括ARIMA模型、指数平滑模型、神经网络模型等。
以上是常见的数据分析方法
Ⅵ 问卷调查数据分析方法有哪些
1、描述性统计分析
包括样本基本资料的描述,作各变量的次数分配及百分比分析,以了解样本的分布情况。
2、Cronbach’a信度系数分析
信度是指测验结果的一致性、稳定性及可靠性,一般多以内部一致性来加以表示该测验信度的高低。信度系数愈高即表示该测验的结果愈一致、稳定与可靠。
3、探索性因素分析和验讧性因素分析
用以测试各构面衡量题项的聚合效度与区别效度。
4、结构方程模型分析
可同时处理多个因变量,容许自变量和因变量含测量误差,可同时估计因子结构和因子关系。
问卷调查的种类
问卷调查根据载体的不同,可分为纸质问卷调查和网络问卷调查。
纸质问卷调查就是传统的问卷调查,调查公司通过雇佣工人来分发这些纸质问卷,以回收答卷。这种形式的问卷存在一些缺点,分析与统计结果比较麻烦,成本比较高。
网络问卷调查,就是用户依靠一些在线调查问卷网站,这些网站提供设计问卷,发放问卷,分析结果等一系列服务。这种方式的优点是无地域限制,成本相对低廉,缺点是答卷质量无法保证。
问卷调查,按照问卷填答者的不同,可分为自填式问卷调查和代填式问卷调查。
自填式问卷调查,按照问卷传递方式的不同,可分为报刊问卷调查、邮政问卷调查和送发问卷调查;代填式问卷调查,按照与被调查者交谈方式的不同,可分为访问问卷调查和电话问卷调查。