问题一:什么是聚类分析?聚类算法有哪几种 聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法。聚类分析起源于
分类学,在古老的分类学中,人们主要依靠经验和专业知识来实现分类,很少利用数学工具进行
定量的分类。随着人类科学技术的发展,对分类的要求越来越高,以致有时仅凭经验和专业知识
难以确切地进行分类,于是人们逐渐地把数学工具引用到了分类学中,形成了数值分类学,之后又
将多元分析的技术引入到数值分类学形成了聚类分析。
聚类分析内容非常丰富,有系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论
聚类法、聚类预报法等。
聚类分析计算方法主要有如下几种:分裂法(partitioning methods):层次法(hierarchical
methods):基于密度的方法(density-based methods): 基于网格的方法(grid-based
methods): 基于模型的方法(model-based methods)。
问题二:聚类分析方法有什么好处 5分 聚类分析:将个体(样品)或者对象(变量)按相似程度(距离远近)划分类别,使得同一类中的元素之间的相似性比其他类的元素的相似性更强。目的在于使类间元素的同质性最大化和类与类间元素的异质性最大化。其主要依据是聚到同一个数据集中的样本应该彼此相似,而属于不同组的样本应该足够不相似。
常用聚类方法:系统聚类法,K-均值法,模糊聚类法,有序样品的聚类,分解法,加入法。
注意事项:
1. 系统聚类法可对变量或者记录进行分类,K-均值法只能对记录进行分类;
2. K-均值法要求分析人员事先知道样品分为多少类;
3. 对变量的多元正态性,方差齐性等要求较高。
应用领域:细分市场,消费行为划分,设计抽样方案等
优点:聚类分析模型的优点就是直观,结论形式简明。
缺点:在样本量较大时,要获得聚类结论有一定困难。由于相似系数是根据被试的反映来建立反映珐试间内在联系的指标,而实践中有时尽管从被试反映所得出的数据中发现他们之间有紧密的关系,但事物之间却无任何内在联系,此时,如果根据距离或相似系数得出聚类分析的结果,显然是不适当的,但是,聚类分析模型本身却无法识别这类错误。
问题三:什么是聚类分析? 聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法。聚类分析起源于
分类学,在古老的分类学中,人们主要依靠经验和专业知识来实现分类,很少利用数学工具进行
定量的分类。随着人类科学技术的发展,对分类的要求越来越高,以致有时仅凭经验和专业知识
难以确切地进行分类,于是人们逐渐地把数学工具引用到了分类学中,形成了数值分类学,之后又
将多元分析的技术引入到数值分类学形成了聚类分析。
聚类分析内容非常丰富,有系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论
聚类法、聚类预报法等。
聚类分析计算方法主要有如下几种:分裂法(partitioning methods):层次法(hierarchical
methods):基于密度的方法(density-based methods): 基于网格的方法(grid-based
methods): 基于模型的方法(model-based methods)。
问题四:常用的聚类方法有哪几种?? 1.k-mean聚类分析 适用于样本聚类;
2.分层聚类 适用于对变量聚类;
3.两步搐类 适用于分类变量和连续变量聚类;
4.基于密度的聚类算法;
5.基于网络的聚类;
6.机器学习中的聚类算法;
前3种,可用spss简单操作实现;
问题五:spss聚类分析方法有哪些 首先,k-means你每次算的结果都会不一样,因为结果跟初始选取的k个点有关
问题六:聚类分析方法是什么? 5分 聚类分析:将个体(样品)或者对象(变量)按相似程度(距离远近)划分类别,使得同一类中的元素之间的相似性比其他类的元素的相似性更强。目的在于使类间元素的同质性最大化和类与类间元素的异质性最大化。
问题七:聚类分析的算法 聚类分析是数据挖掘中的一个很活跃的研究领域,并提出了许多聚类算法。传统的聚类算法可以被分为五类:划分方法、层次方法、基于密度方法、基于网格方法和基于模型方法。1 划分方法(PAM:PArtitioning method) 首先创建k个划分,k为要创建的划分个数;然后利用一个循环定位技术通过将对象从一个划分移到另一个划分来帮助改善划分质量。典型的划分方法包括:k-means,k-medoids,CLARA(Clustering LARge Application),CLARANS(Clustering Large Application based upon RANdomized Search).FCM2 层次方法(hierarchical method) 创建一个层次以分解给定的数据集。该方法可以分为自上而下(分解)和自下而上(合并)两种操作方式。为弥补分解与合并的不足,层次合并经常要与其它聚类方法相结合,如循环定位。典型的这类方法包括:BIRCH(Balanced Iterative Recing and Clustering using Hierarchies) 方法,它首先利用树的结构对对象集进行划分;然后再利用其它聚类方法对这些聚类进行优化。CURE(Clustering Using REprisentatives) 方法,它利用固定数目代表对象来表示相应聚类;然后对各聚类按照指定量(向聚类中心)进行收缩。ROCK方法,它利用聚类间的连接进行聚类合并。CHEMALOEN方法,它则是在层次聚类时构造动态模型。3 基于密度的方法,根据密度完成对象的聚类。它根据对象周围的密度(如DBSCAN)不断增长聚类。典型的基于密度方法包括:DBSCAN(Densit-based Spatial Clustering of Application with Noise):该算法通过不断生长足够高密度区域来进行聚类;它能从含有噪声的空间数据库中发现任意形状的聚类。此方法将一个聚类定义为一组“密度连接”的点集。OPTICS(Ordering Points To Identify the Clustering Structure):并不明确产生一个聚类,而是为自动交互的聚类分析计算出一个增强聚类顺序。。4 基于网格的方法,首先将对象空间划分为有限个单元以构成网格结构;然后利用网格结构完成聚类。STING(STatistical INformation Grid) 就是一个利用网格单元保存的统计信息进行基于网格聚类的方法。CLIQUE(Clustering In QUEst)和Wave-Cluster 则是一个将基于网格与基于密度相结合的方法。5 基于模型的方法,它假设每个聚类的模型并发现适合相应模型的数据。典型的基于模型方法包括:统计方法COBWEB:是一个常用的且简单的增量式概念聚类方法。它的输入对象是采用符号量(属性-值)对来加以描述的。采用分类树的形式来创建一个层次聚类。CLASSIT是COBWEB的另一个版本.。它可以对连续取值属性进行增量式聚类。它为每个结点中的每个属性保存相应的连续正态分布(均值与方差);并利用一个改进的分类能力描述方法,即不象COBWEB那样计算离散属性(取值)和而是对连续属性求积分。但是CLASSIT方法也存在与COBWEB类似的问题。因此它们都不适合对大数据库进行聚类处理.传统的聚类算法已经比较成功的解决了低维数据的聚类问题。但是由于实际应用中数据的复杂性,在处理许多问题时,现有的算法经常失效,特别是对于高维数据和大型数据的......>>
问题八:主成分分析法和聚类分析法的区别
问题九:聚类分析方法具体有哪些应用?可不可以举个例子? 比如说现在要把n个产品按产品的m个指标继续聚类,因为产品可能之前的特色是不一样的。而这个时候影响产品的因素有m个,不可能一个一个的考虑,那样是分不出类来的。所以只能对产品的m个指标综合考虑,采用SPSS中的样本聚类方法,就可以直接将产品分好类。并且从分析结果还可以看出各类产品的特色分别是什么。。就是最主要的分类标准是什么。
聚类分析不仅可以用于样本聚类,还可以用于变量聚类,就是对m个指标进行聚类。因为有时指标太多,不能全部考虑,需要提取出主要因素,而往往指标之间又有很多相关联的地方,所以可以先对变量聚类,然后从每一类中选取出一个代表型的指标。这样就大大减少了指标,并且没有造成巨大的信息丢失。
② 聚类分析方法应用于哪些问题的研究
1.聚类分析的特点
聚类分析(cluster analysis)是根据事物本身的特性研究个体的一种方法,目的在于将相似的事物归类.它的原则是同一类中的个体有较大的相似性,不同类的个体差异性很大.这种方法有三个特征:适用于没有先验知识的分类.如果没有这些事先的经验或一些国际、国内、行业标准,分类便会显得随意和主观.这时只要设定比较完善的分类变量,就可以通过聚类分析法得到较为科学合理的类别;可以处理多个变量决定的分类.例如,要根据消费者购买量的大小进行分类比较容易,但如果在进行数据挖掘时,要求根据消费者的购买量、家庭收入、家庭支出、年龄等多个指标进行分类通常比较复杂,而聚类分析法可以解决这类问题;聚类分析法是一种探索性分析方法,能够分析事物的内在特点和规律,并根据相似性原则对事物进行分组,是数据挖掘中常用的一种技术.
这种较成熟的统计学方法如果在市场分析中得到恰当的应用,必将改善市场营销的效果,为企业决策提供有益的参考.其应用的步骤为:将市场分析中的问题转化为聚类分析可以解决的问题,利用相关软件(如SPSS、SAS等)求得结果,由专家解读结果,并转换为实际操作措施,从而提高企业利润,降低企业成本.
2.应用范围
聚类分析在客户细分中的应用
消费同一种类的商品或服务时,不同的客户有不同的消费特点,通过研究这些特点,企业可以制定出不同的营销组合,从而获取最大的消费者剩余,这就是客户细分的主要目的.常用的客户分类方法主要有三类:经验描述法,由决策者根据经验对客户进行类别划分;传统统计法,根据客户属性特征的简单统计来划分客户类别;非传统统计方法,即基于人工智能技术的非数值方法.聚类分析法兼有后两类方法的特点,能够有效完成客户细分的过程.
例如,客户的购买动机一般由需要、认知、学习等内因和文化、社会、家庭、小群体、参考群体等外因共同决定.要按购买动机的不同来划分客户时,可以把前述因素作为分析变量,并将所有目标客户每一个分析变量的指标值量化出来,再运用聚类分析法进行分类.在指标值量化时如果遇到一些定性的指标值,可以用一些定性数据定量化的方法加以转化,如模糊评价法等.除此之外,可以将客户满意度水平和重复购买机会大小作为属性进行分类;还可以在区分客户之间差异性的问题上纳入一套新的分类法,将客户的差异性变量划分为五类:产品利益、客户之间的相互作用力、选择障碍、议价能力和收益率,依据这些分析变量聚类得到的归类,可以为企业制定营销决策提供有益参考.
以上分析的共同点在于都是依据多个变量进行分类,这正好符合聚类分析法解决问题的特点;不同点在于从不同的角度寻求分析变量,为某一方面的决策提供参考,这正是聚类分析法在客户细分问题中运用范围广的体现.
聚类分析在实验市场选择中的应用
实验调查法是市场调查中一种有效的一手资料收集方法,主要用于市场销售实验,即所谓的市场测试.通过小规模的实验性改变,以观察客户对产品或服务的反应,从而分析该改变是否值得在大范围内推广.
实验调查法最常用的领域有:市场饱和度测试.市场饱和度反映市场的潜在购买力,是市场营销战略和策略决策的重要参考指标.企业通常通过将消费者购买产品或服务的各种决定因素(如价格等)降到最低限度的方法来测试市场饱和度.或者在出现滞销时,企业投放类似的新产品或服务到特定的市场,以测试市场是否真正达到饱和,是否具有潜在的购买力.前述两种措施由于利益和风险的原因,不可能在企业覆盖的所有市场中实施,只能选择合适的实验市场和对照市场加以测试,得到近似的市场饱和度;产品的价格实验.这种实验往往将新定价的产品投放市场,对顾客的态度和反应进行测试,了解顾客对这种价格的是否接受或接受程度;新产品上市实验.波士顿矩阵研究的企业产品生命周期图表明,企业为了生存和发展往往要不断开发新产品,并使之向明星产品和金牛产品顺利过渡.然而新产品投放市场后的失败率却很高,大致为66%到90%.因而为了降低新产品的失败率,在产品大规模上市前,运用实验调查法对新产品的各方面(外观设计、性能、广告和推广营销组合等)进行实验是非常有必要的.
在实验调查方法中,最常用的是前后单组对比实验、对照组对比实验和前后对照组对比实验.这些方法要求科学的选择实验和非实验单位,即随机选择出的实验单位和非实验单位之间必须具备一定的可比性,两类单位的主客观条件应基本相同.
通过聚类分析,可将待选的实验市场(商场、居民区、城市等)分成同质的几类小组,在同一组内选择实验单位和非实验单位,这样便保证了这两个单位之间具有了一定的可比性.聚类时,商店的规模、类型、设备状况、所处的地段、管理水平等就是聚类的分析变量
③ 聚类分析(2)聚类技术
系列文章: 聚类分析(1)之市场细分
聚类分析方法分为快速聚类和系统聚类(层次聚类)。快速聚类spss使用的是K-means聚类算法。该聚类方法需要指定聚类数量,通常我们需要多次尝试并分析多少个类合适。聚类分析适合大样本量情况。样本个数超过500,变量数超过50(并不是强制的)。
聚类分析数据类型为数值型,非数值型变量需要做转换,二分类变量(0,1)可以参与聚类分析。聚类多数适用于连续变量,分类变量适用对应分析。
聚类分析对极端值敏感,同时变量数据的量纲也会影响到聚类结果,需要做标准化处理。
结果依赖于第一次初始分类,聚类中绝大多数重要变化均发生在第一次分配中。
聚类分析中,关于分类时,一种是利用相似系数,性质越接近的,相似系数就越接近1或者-1,通过此来确定归类。另一种是利用空间距离,将每一个点看做m维空间上的一个点,并在空间中定义距离。
在spss中可以设定迭代次数。
来自《Python数据科学:技术详解与商业实践》。聚类效果的评估基于结果的可解释性,通常需要多次聚类才能找到合适的分类。
数据包含6个变量(字段),除了客户编号为名义变量外,其他都是连续变量。
不论什么做什么数据分析,第一步就是查看原始数据的分布,这里应该查看一下各变量的数据分布状态:均值,极大极小值,方差,缺失情况。
通过spss分析-描述
可以看出1.量纲差异较大。2极大极小值组距很大。从这方面可以讲,我们需要做标准化处理。先尝试不做标准化处理。
通过业务知识等,决定先设定5个细分人群,后面可以再尝试4和6。
先做标准化处理:spss分析-描述。在左下角中有一个“将标准化值另存为变量”,标准化为Z分数。确定后会生成新的标准化后的变量。
对标准化后的变量聚类:分析-分类-K-means
选择迭代次数同时将分类结果存在表中。
默认迭代次数是10次,迭代次数过少,可能已经迭代完了仍无法收敛,所以需要增加迭代次数。将分类结果保存在表中,是指对每个样本标注被分到哪一类了。这一步的目的是为了后续通过其他方法(比如比较均值)来看5类人群之间的差异。停
输出4个表格,都是经过标准化处理的。主要查看是否已经迭代收敛。然后下一步就是做均值比较等,目的是查看5类人群是否有差异,分类是否合理。同时还可以在对4和6类人群试做分类。聚类分析无法检验标准,
通过比较均值,可以了解5类人群之间的差异
输出的结果
从结果中可以看出
第一类:高端商用客户,总通话时间长,工作日上班时间通话比例高
第二类:少使用低端客户,总通话时间短,各时段通话时间都短
第三类:中端商用客户,总通话时间居中,工作日上班时间通话比例高
第四类:中端日常用客户,总通话时间居中,工作日下班时间通话比例高
第五类:长聊客户,每次通话时间长
④ 主成分分析和聚类分析应用在哪些领域
主成分分析法在过程中产生新变量,而聚类分析法在过程中没有产生新变量。
主成分分析法:一种数学变换的方法, 它把给定的一组相关变量通过线性变换转成另一组不相关的变量,这些新的变量按照方差依次递减的顺序排列。
聚类分析法:理想的多变量统计技术,主要有分层聚类法和迭代聚类法。是研究分类的一种多元统计方法。你现在有了每个样本的主成分分值,用这些分值,对这些样本进行分类。 就是说,每个样本现在有三个值了,就是三个主成分的值,现在要看看那些样本比较相似。