1. 如何对两种不同实验方法测定同一指标的数据进行统计学分析
首先要判断两组数据是否是正态分布资料,两组是否方差齐,
然后可以计算两组的均数进行t检验
如果不满足正态分数,需要进行数据变换
实在不行的话,最后用秩和检验
1、细分剖析
细分剖析是数据剖析的根底,单一维度下的目标数据信息价值很低。细分办法能够分为两类,一类是逐步剖析,比方:来北京市的访客可分为向阳,海淀等区;另一类是维度穿插,如:来自付费SEM的新访客。
细分用于处理一切问题。比方漏斗转化,实际上便是把转化进程依照过程进行细分,流量途径的剖析和评价也需要很多的用到细分办法。
2、比照剖析
比照剖析主要是指将两个彼此联系的目标数据进行比较,从数量上展示和阐明研讨目标的规划巨细,水平高低,速度快慢等相对数值,通过相同维度下的目标比照,能够发现,找出事务在不同阶段的问题。常见的比照办法包括:时间比照,空间比照,标准比照。
3、漏斗剖析
转化漏斗剖析是事务剖析的基本模型,最常见的是把最终的转化设置为某种意图的实现,最典型的便是完成买卖。但也能够是其他任何意图的实现,比方一次运用app的时间超越10分钟。
3. 大白话谈大数据:数据分析方法之对比分析
对比分析是数据分析中最常用、好用、实用的分析方法,它是将两个或两个以上的数据进行比较,分析其中的差异,从而揭示这些事物代表的发展变化情况以及变化规律。
先看看思维导图:
使用分析方法(和谁比)
如何使用对比分析法,就要先考虑 和谁比 这个问题。
和自己比较
通过和自己过去的平均值相比,发现问题,围绕问题进行分析,出现的问题是自身问题导致的还是行业问题导致的,如果自己的环比出现了问题,就要从自身上找原因,提高活跃率。
和行业比较
将自己的平均值和行业平均值进行比较,和同行一比,往往会发现很多问题。
使用分析方法(如何比较)
第二个要考虑的问题就是 如何比较 ?
数据整体的大小 :用某些指标来衡量整体数据的大小,常用的数据指标为:平均值、中位数、某个业务指标
数据整体波动 :用变异系数来衡量整体数据的波动情况
趋势变化 :运用对比分析来分析趋势变化的时候,最主要的是找到合适的对比标准。找到标准,将对比对象的指标与标准进行对比,就能得出有结果了。目前常用标准是时间标准、空间标准、特定标准。
第一类时间标准 :
动作前后对比 ,可以看到动作前后的效果,如对比某次营销活动前后的对比。
时间趋势对比 ,可以评估指标在一段时间内的变化,可以通过环比,来判断短时间内趋势的变化。
与去年同期对比 ,当数据存在时间周期变化的时候,可以与去年同期对比,剔除时间周期变化因素。通过同比,来判断短时间内趋势的变化。
环比:本月和上个月比较,短时间的比较
同比:本年和上一年比较,长时间的比较
第二类空间标准 :
A/B测试 ,在同一时间维度,分别让组成成分相同的目标用户,进行不同的操作,最后分析不同组的操作效果,A/Btest我接下去也会讲。
相似空间对比 ,运用两个相似的空间进行比较,找到二者的差距,比如同类型甲APP(贝壳)乙APP(自如)的年留存率情况,明显看出哪个APP的留存率更高,日常生活中相似空间比较常用的就是城市、分公司之间的对比。
先进空间对比 ,是指与行业内领头羊对比,知晓差距多少,再细分原因,从而提高自身水平。如淘宝和京东的对比。
第三类特定标准 :
与计划值对比 ,目标驱动运营,在营销中会制定年、月、甚至日的目标,通过与目标对比,分析自己是否完成目标,若未完成目标,则深层次分析原因。目标驱动的好处,就是让运营人员一直积极向上努力的去完成目标,从而带动公司盈利。
与平均值对比 ,与平均值对比,主要是为了知晓某部分与总体差距。
与理论值对比 ,这个对比主要是因为无历史数据,所以这个时候只能与理论值对比。理论值是需要经验比较丰富的员工,利用工作经验沉淀,参考相似的数据,得出来的值。
对比分析方法原则
对比分析需要坚持可比性原则:对比对象相似,对比指标同质
对比对象相似 :进行比较的时候注意,比较规模要一致,对比对象越相似,就越具有可比性,比如说不能用你的工资和思聪的零花钱进行比较,这样不公平。如果要比,就和你出生,教育背景相似的人进行比较。当然这只是个不恰当的例子haha
对比指标同质: 同质可以表现在下面三点:
1.指标口径范围相同 ,比如甲 APP 与乙 APP 的用户年留存率比较,如果用甲 APP 18年的用户留存率,那乙 APP 也需要是18年的,不能拿乙17年的与甲18年的比较。
2.指标计算方法一样 ,也就是计算公式相同,比如一个用除法、一个用加法进行计算。
3.指标计量单位一致 ,不能拿身高和体重进行比较,二者常用单位一个是厘米,一个是千克。
分析方法应用
举一个例子吧,A/Btest
什么是A/B测试呢?为统一个目标制定两个版本,这两个版本只有某个地方不一样,其他地方保持不变,让一部分用户使用A版本,一部分用户使用B版本,A版本为实验组,B版本为对照组,两个版本运行一段时间后,分别统计两组用户的表现,然后对两组数据进行对比分析,选择效果好的版本,正式发布给全部用户。
当然现实中的A/Btest也远没有这么简单,我接下去会写一篇文章专门讲讲A/Btest的,挖坑+1 hahaha
最后打个小广告,我的公众号(顾先生的数据挖掘)
喜欢的小伙伴可以关注下,你的关注是我最大的动力。