1. 海水分析化学的有机物分析
海水中的有机物含有氨基酸、碳水化合物等来自生物的天然存在的物质,和石油烃、氯代烃类杀虫剂等人为的环境污染物。它们的浓度一般都很低,通常为ppb水平或更低,因此在大量无机盐存在下分析有机物时,必须预先用蒸发、溶剂萃取、电泳脱盐和离子交换树脂分离等方法加以浓缩。常用的分析方法有分光光度法、色谱法、荧光分析法和红外吸收光谱法等。在研究海洋有机物在元素地球化学平衡中的作用(见海洋地球化学)和它们对无机盐类和氧的循环所起的作用时,常讨论总有机碳、总有机磷和总有机氮的含量。
总有机碳分析 有湿氧化法、光化学氧化法和干燃烧法。湿氧化法是在水样中加入氧化剂进行氧化,使有机碳生成二氧化碳;光化学氧化法是用汞弧灯管照射水样,使有机碳进行光化学氧化而生成二氧化碳;干燃烧法则将水样酸化,然后蒸干,或用少量水样直接注射入燃烧管,在催化剂存在下通入氧气进行高温燃烧,使有机碳转化成二氧化碳,然后用电导法,气相色谱法或非色散红外分析法测定。这 3个方法中,以湿氧化法比较简便易行,应用最广。
总有机氮分析 可用改进的微量谢尔达尔法或光化学氧化法,将试样中的有机氮分解并生成硝酸盐,也可在碱性条件下用氧化剂将其氧化成硝酸盐,然后还原成亚硝酸盐,按常规方法测定。
总有机磷分析 在加压下将有机磷分解,使生成无机磷酸盐,然后用磷钼蓝光度法测定。也可用光化学氧化法和过硫酸盐氧化法进行分解,然后测定。后面这两种方法,因适合连续自动化测定,已被推荐为标准方法。
碳水化合物分析 可测定其总量,也可测定个别单糖的含量。总量的测定是用浓硫酸将碳水化合物脱水,再使其与某些芳香类化合物形成有色化合物,进行比色测定。常用的试剂有苯酚、蒽酮、N-乙基咔唑、5-甲基苯二酚-【1,3】、1-色氨酸等。 个别单糖的测定可以在分离富集后用色谱分析、分光光度法分析、酶分析或荧光分析法检测。
氨基酸分析 常用配位交换法富集海水中的氨基酸,即用亚氨基二乙酸系阳离子交换树脂与某些重金属离子,如铜离子,结合而成的金属-树脂交换剂,选择吸附氨基酸,然后用自动氨基酸分析仪进行测定。还可将分离富集后的氨基酸制成甲基或乙基衍生物,再进行气液色谱分析。此外,荧光分析法和高效液相色谱法已得到较广泛的应用,例如用邻-苯二醛和氨基酸生成荧光产物后进行检测。此法灵敏度高,检测浓度可达几个pmol。
脂肪酸、羟基酸和脂类化合物分析 通常在酸化条件下进行萃取浓缩,再制成衍生物或荧光化合物,然后用气相色谱法或高效液相色谱法分析。还可用间接的方法测定总脂肪酸的浓度。如用氯仿萃取浓缩后,使形成铜络合物,再用原子吸收光谱测定络合物中的铜。
光合色素分析 主要是进行叶绿素的分析。为此,用90%丙酮萃取后,用分光光度计测出在 3个不同波长下的吸光值,应用SCOR/UNESCO方程式或其他3色分光光度方程式计算,可分别得出叶绿素a、b、c的浓度。
维生素分析 通常分析维生素B12、维生素 B1和生物素。用生物鉴定法检测其浓度。
烃类化合物分析 有天然存在的和因石油污染而进入海洋的。其测定方法首先是用有机溶剂萃取,分离之后,再根据测定总量或测定个别组分而选择分析的方法。对一般污染监测,可测定其总量。萃取后,或者用色谱分离法除去其他有机化合物后,用紫外吸收光谱法测定,也可用红外吸收光谱分析法对烃类进行定性或定量分析。个别组分的挥发性烃,可先用有机溶剂萃取浓缩,通入惰性气体,用吸附剂或冷阱收集,解吸后进行气相色谱分析。高效液相色谱法有连续定量检测的优点,应用较广。还可用气相色谱-质谱联用分析法,它有较高的灵敏度。
氯化烃类化合物分析 人类活动造成的海洋污染物,如 DDT、DDD、狄氏剂、PCB类等各种氯代烃类化合物在海水中的浓度,一般在pmol以下,常用液-液萃取法和吸附剂分离法,先分离、富集,然后用气相色谱法进行分析。
酚类化合物分析 在沿岸海域的海水中,酚类化合物的浓度较大,它主要是工业污染物,少量是由潮间带的固着藻类分泌出来的,可用比色法分析。例如从酸性溶液中用水汽蒸馏法分离出酚类化合物之后,加入4-氨基安替比林,生成有色衍生物,用光度法测定。也可用荧光法和极谱法,测定酚类化合物。个别酚类化合物可用大孔阴离子交换树脂进行分离,然后用气相色谱法或气相色谱-质谱联用法测定。 用液相色谱法可分析某些具有天然荧光的酚类。沿岸水中的腐殖质、木质素等多酚类物质,可用荧光分光光度法检测。
有机汞、砷化合物分析 对人类有直接毒害的化合物。对有机汞化合物,一般先将其破坏分解或氧化为无机汞然后测定。还可用萃取法将有机汞预先分离,或将其转化为碘化物或氯化物后再分离,最后用气相色谱法测定。分子量较低的有机砷化合物因易于挥发,可用气相色谱法或原子吸收法。为鉴别各种形式的砷,可用硼氢化钠将其还原成相应的胂类化合物,以冷阱收集后缓慢升温,然后用色谱法或原子吸收法测定。
表面活性物质分析 在海水中有自然存在的和人类活动引入的表面活性物质,它们集中于海-气界面,必须用特殊的采样器采样。人为的阴离子表面活性剂,可用次甲蓝分光光度法测定,也可在试样中加入过量的阳离子表面活性剂,酸化后用 4苯硼化钠标准溶液滴定。此外,还可应用金属化合物如双-乙二胺铜(Ⅱ)与阴离子表面活性剂生成络合物后,用有机溶剂萃取,再用原子吸收法测定金属的含量。对人为的阳离子表面活性剂,可在试样中加入过量的阴离子表面活性剂后,用与上面相似的方法测出其含量。若需鉴定各组分,可用液相色谱法分离后加以测定。海水中自然存在的表面活性物质,可用极谱法或分光光度法测定。
自动化分析 为了分析数量很多的海水样品,最好在现场进行连续自动测定。海水自动化学分析系统主要由取样器、蠕动泵、分析线、延迟和反应系统、流动式比色计记录装置等几部分所组成。根据上述原理已设计和生产出多种型号的测定氮、磷、硅等微量成分和有机碳的自动分析系统。在另一类自动分析中,使用了传感器,将传感器投放于海水中,连续走航记录。但是,传感器的灵敏度还不够高,已采用过的有盐度、pH、氧化还原电位、溶解氧、浊度、氟离子浓度等少数项目的测定。
海水分析化学虽然已发展成为分析化学和海洋化学中较系统的一个分支学科。但是,海洋科学的发展,仍给它提出了许多有待解决的课题。例如:保持现场状态不同种类水样的采样方法,超痕量无机组分的分析及其分析准确度的提高,不同组分的形态分析方法,超痕量有机组分的分析,快速的现场自动分析方法,保证和提高分析可靠性和可比性的方法学的研究和有关标准参考物质的制备等。
2. 碳、氢的测定
73.11.1.1 重量法
方法提要
一定量煤样在氧气流中燃烧,煤中碳生成二氧化碳、氢生成水。生成的二氧化碳和水分别被二氧化碳吸收剂和吸水剂吸收,根据吸收剂的增量,计算煤中碳、氢含量。煤样中硫和氯对碳测定的干扰,在三节炉法中分别用铬酸铅和卷状银丝除去,在二节炉法中用高锰酸银热分解产物除去; 氮 (氮氧化合物) 对碳测定的干扰,由粒状二氧化锰除去。
反应方程式如下。
燃烧反应:
岩石矿物分析第四分册资源与环境调查分析技术
对CO2和H2O的吸收反应:
岩石矿物分析第四分册资源与环境调查分析技术
排除硫、氯、氮对测定干扰的反应:
三节炉法中,在燃烧管内用铬酸铅脱除硫的氧化物,用卷装银丝脱氧: 二节炉法中,用高锰酸银热分解产物脱除硫和氯:
岩石矿物分析第四分册资源与环境调查分析技术
在燃烧管外部,用粒状二氧化锰除去氮氧化物:
岩石矿物分析第四分册资源与环境调查分析技术
仪器
碳氢测定装置 见图73.34。
碳氢测定装置主要由燃烧系统、净化系统和吸收系统 3 部分组成。
燃烧系统为一个三节炉或二节炉,炉内径 35mm,内有一燃烧管,管内装燃烧舟。
三节炉 第一节长 230mm,可加热到 (850 ± 10) ℃,能沿水平方向移动; 第二节长330~ 350mm,可加热到 (800 ± 10) ℃ ; 第三节长 130~ 150mm,可加热到 (600 ± 10) ℃ 。
两节炉 第一节长 230mm,可加热到 (850 ± 10) ℃,能沿水平方向移动; 第二节长130~ 150mm,可加热到 (500 ± 10) ℃ 。
燃烧管 素瓷、石英、刚玉或不锈钢制品,长 1100~1200mm (三节炉用) 或 800mm(两节炉用) ,内径 20~ 22mm,壁厚约 2mm。
燃烧舟 长约 80mm,素瓷、刚玉或石英制品。
净化系统包括两个干燥塔 (容积 500mL) 和一个流量计 (测量范围 0~150mL/min) 。
吸收系统包括 1 个吸水管、1 个除氮管和 2 个二氧化碳吸收管。
带磨口塞的玻璃管 (图73.35) 或小型干燥器 (不装干燥剂) 。
气泡计 容量约 10mL (图73.36) 。
橡胶帽 (图73.37) 或橡胶塞、铜接头。
图73.34 碳氢测定装置示意图
图73.35 玻带磨口塞的玻璃管(数字单位 mm)
图73.36 气泡计(数字单位 mm)
图73.37 橡胶帽(数字单位 mm)
试剂
碱石棉 粒度1~2mm; 或碱石灰,粒度0.5~2mm; 或粒状氢氧化钙,粒度1~3mm。
无水氯化钙 粒度 2~5mm; 或无水高氯酸镁,粒度 1~3mm。
氧化铜 线状,长约 5mm。
铬酸铅 粒度 1~4mm。
卷状银丝 丝直径约 0.25mm。
卷状铜丝 丝直径约 0.5mm。
氧气 不含氢。
硫酸。
三氧化钨。
二氧化碳钢瓶装气体。
粒状二氧化锰称取25gMnSO4·5H2O溶于500mL水中。另称16.4gKMnO4溶于300mL水中。把两种溶液都加热到50~60℃。将高锰酸钾溶液慢慢注入硫酸锰溶液中,并剧烈搅拌。加入10mL(1+1)H2SO4,再将溶液加热到70~80℃,继续搅拌5min,停止加热,静置2~3h。用热水以倾泻法洗到中性。将沉淀移到漏斗过滤,然后在150℃下烘干(约2~3h),得到褐色疏松状的二氧化锰。小心破碎和过筛,取粒度0.5~2mm的颗粒备用。
氧化氮指示胶在瓷蒸发皿中将小于2mm的40g无色硅胶和30mLHCl搅拌均匀。在砂浴上蒸发多余的盐酸直到看不见明显的蒸气逸出为止。然后把硅胶粒浸入30mL100g/LKSCN溶液中,搅拌均匀后取出烘干。再把它浸入30mL2g/L雷伏奴耳(乳酸-6,9二氨基-2乙氧基吖啶)溶液中,搅拌均匀后取出,用黑纸包好烘干,放在深色瓶中置于暗处备用。
高锰酸银热分解产物称取100gKMnO4溶于2L沸水中。取107.5g的AgNO3溶于约50mL水中,然后在不断搅拌下缓缓注入沸腾的高锰酸钾溶液中,静置过夜后得到有光泽的深紫色结晶。用水洗涤数次,在60~80℃下干燥1h。将晶体一小份一小份地放在瓷皿中,在电炉上缓缓加热到骤然分解,得到银灰色疏松产物,收集在磨口瓶中备用。未分解的高锰酸银不宜大量贮存,以免受热分解引起爆炸。
试验准备
1)测定装置的填充和连接。将测定装置各部件和容器依次连接,燃烧管两端用耐热橡胶帽或橡胶塞、铜接头连接。
氧气净化系统包括两个气体干燥塔。一个气体干燥塔下部(约1/3)装碱石棉或碱石灰,上部(约2/3)装无水氯化钙或无水高氯酸镁;另一个装无水氯化钙或无水高氯酸镁。净化剂经70~100次测定后,应检查并进行必要的更换。氧气由带有氧气吸入器的氧气钢瓶供给。为指示氧气流量,在两个干燥塔之间连接一个氧气流量计。
吸收系统由4个U型管组成,依次为吸水管(内装无水氯化钙或无水高氯酸镁)、除氮管(采用直径15mm、装试剂部分高120mm的大U型管,前1/2装二氧化锰,后1/2装无水氯化钙或无水高氯酸镁)和2个二氧化碳吸收管(前2/3装碱石棉或碱石灰,后1/3装无水氯化钙或无水高氯酸镁)。各U型管磨口塞处涂少许真空硅脂。吸收系统的末端连接一个空U型管(防止硫酸倒吸)和一个装有浓硫酸的气泡计。
用作吸水剂的无水氯化钙如果含有碱性物质,应先用二氧化碳饱和,并除去过剩的二氧化碳。处理方法:把无水氯化钙破碎到需要的粒度(如果氧化钙在保存或破碎过程中已吸水,可放到高温炉中在300℃下灼热1h)装入气体干燥塔内(可串联若干个),缓慢通入干燥的二氧化碳气(由启普氏气体发生器或由带有减压装置的二氧化碳钢瓶供给)3~4h,然后关闭干燥塔,放置过夜。通入不含二氧化碳的干燥空气,将过剩的二氧化碳去除。处理后的无水氯化钙放入严密的容器中贮存。市售分析纯无水氯化钙的碱性物质(氢氧化钙)含量小于0.02%的,可不进行处理。
出现下列现象时,应更换U型管中的试剂:U形管中的无水氯化钙开始溶化并阻碍气体畅通;第二个二氧化碳吸收管一次质量增加达50mg时,应更换第一个吸收管中的二氧化碳吸收剂;二氧化锰一般使用50次左右应进行检查或更换。检查方法:将氧化氮指示胶装在玻璃管中,两端用棉花堵上,接在除氮管后面,或将指示胶少许放在二氧化碳吸收管的进气端棉花处。燃烧煤样,如果指示胶由草绿色变成血红色,表示应更换二氧化锰。
上述 U 型管更换试剂后,应以 120mL/min 流量通氧气,质量恒定后方能使用。
燃烧系统燃烧管按下述方式充填: 三节炉用燃烧管充填 (图73.38) ,首先制成 3 个长 30mm 和 1 个长 100mm 的卷装铜丝,直径略小于燃烧管的内径,以便能自由推入管内并与管壁保持尽可能小的间距。100mm 长的卷装铜丝二端带一个粗铜丝制成的环或钩,以便由管中取出或放入。制成的卷装铜丝应在高温炉中于 800℃下灼烧 1h。燃烧管出气端起,先留出约 50mm 空间,然后依次填充 30mm 卷状银丝、30mm 卷装铜丝、130~150mm(与第三节电炉长度一致) 铬酸铅 (如用石英管,应该用铜片把铬酸铅与管壁隔开) 、30mm 卷装铜丝、330~ 350mm (与第二节电炉长度一致) 线状氧化铜、30mm 卷装铜丝、310mm 空间 (与第一节电炉加上燃烧舟的长度相等) 和 100mm 卷装铜丝。燃烧管两端装橡皮帽或橡皮塞,以便分别同净化系统和吸收系统连通。橡皮帽或橡皮塞使用前应预先在105~ 110℃ 烘烤 8h。燃烧管中的充填物 (氧化铜、铬酸铅和卷装银丝) 经 70~ 100 次测定后应检查和更换。
氧化铜用孔径 1mm 筛筛去粉末后即可再用。铬酸铅可用 50g/L NaOH 热碱液浸泡,然后用水洗净碱液,烘干,在 500~ 600℃ 下灼烧至少 30min,即可再用。卷装银丝用NH4OH 浸 5min 后,在水中煮沸 5min,用水冲洗后烘干,可再用。
图73.38 三节炉燃烧管的充填方式示意图
两节炉用燃烧管充填 (图73.39) ,首先制 1 个长 100mm、两个长 10mm 的卷装铜丝,再用 100 目铜丝布剪成直径与燃烧管匹配的圆形片 3~4 个 (防止高锰酸银热解产物被带出) 。
图73.39 二节炉燃烧管的充填方式示意图
2) 炉温校正。将工作热电偶插入三节电炉的热电偶孔内,使热端稍进入炉膛内,冷端与高温表连接。将炉温升到规定温度,保温 1h。然后将标准热电偶热端沿燃烧管轴向依次插至燃烧管中对应第一、第二和第三节炉的中心处 (注意,勿使热电偶与燃烧管壁接触) 。根据标准热电偶指示,调节相应电炉控制器,使炉温达到规定温度,恒温 5min后记下相应工作热电偶的温度读数。在日常测定中,即以此为准进行温度控制。
3) 空白试验。将装置连接后,通电升温并以 120mL / min 流量通氧气,检查整个系统的气密性,直到各部分都不漏气为止。在升温过程中,将第一节电炉往返移动数次,通气20min 左右。取下吸收系统,关闭各 U 形管磨口塞,用绒布擦净,在天平旁放置 10min 后称量。第一节炉达到并保持在 (850 ±10) ℃,第二节炉达到并保持在 (800 ± 10) ℃,第三节炉达到并保持在 (600 ±10) ℃ 时,开始做空白试验。将第一节炉移至紧靠第二节炉,接上已称量过的吸收系统并接通氧气。在燃烧舟中放入三氧化钨 (质量尽可能与日常测定时一致) 。打开橡皮塞,取出卷装铜丝,将装有三氧化钨的燃烧舟推到第一节炉入口处。塞紧橡胶塞,调节氧气流量为 120mL/min。移动第一节炉,使燃烧舟位于第一节炉中心处。通气 23min,将第一节炉移回原位; 2min 后取下吸收管,用绒布擦净,在天平旁放置 10min 后称量。水分吸收管的增加量就是空白值。重复上述空白试验,直到连续两次所得空白值相差不超过 0.0010g 、除氮 U 型管和二氧化碳吸收管最后一次质量变化不超过0.0005g 时为止。取最后两次空白值的平均值作为当天空白值。负压供氧时,应先关闭靠近硫酸气泡计的 U 型管,再依次关闭其他 U 型管,然后取下。
做空白试验前,应先确定燃烧管的位置,使出口端温度尽可能高而又不会使橡胶帽或橡胶塞受热分解。若空白值不易达到稳定,可适当调节燃烧管的位置。
分析步骤
1) 三节炉法分析步骤。将第一节炉温度控制在 (850 ± 10) ℃ ,第二节的炉温控制在(800 ± 10) ℃,第三节的炉温控制在 (600 ± 10) ℃,并使第一节炉紧靠第二节炉。
在预先灼烧过的燃烧舟中称取 0.2g (精确至 0.0001g) 粒度小于 0.2mm 的空气干燥煤样均匀铺平。在煤样上铺一层三氧化钨。若不立即测定,可把燃烧舟暂时存放在专用的磨口玻璃管或不加干燥剂的干燥器内。
将已恒量的吸收系统 U 型管磨口塞旋开后,接上燃烧系统,以每分钟 120mL 的流量通入氧气。打开入口端的橡胶塞,取出卷装铜丝。若燃烧管内有瓷舟,用镍铬丝钩取出。将盛有煤样的燃烧舟迅速放入燃烧管中,用推棒推入,使瓷舟前端刚好在第一节炉口,将卷装铜丝放在燃烧舟后面,塞上橡胶塞。通入氧气,流量保持在 120mL/min。隔 1min,移动第一节炉,使燃烧舟的一半进入炉口; 过 2min,移动炉子,使燃烧舟全部进入炉口;再过 2min,再移动炉子,使燃烧舟位于炉子中心处。保温 18min 后,把第一节炉移回原位。2min 后,拆下吸收系统的 U 型管并关闭其磨口塞,用绒布擦净,在天平旁放置 10min后称量 (除氮 U 型管不必称量) 。
2) 二节炉法分析步骤。在这种情况下,第一节炉温控制在 (850 ± 10) ℃ ,第二节炉温控制在 (500 ±10) ℃,并使第一节炉紧靠第二节炉,每次空白试验时间为 20min,燃烧舟在炉中心位置保温时间为 13min。其他操作与三节炉法时相同。
3) 测定装置和操作技术可靠性检查。称取约 0.2g 标准煤样,按规定步骤操作,若实测值与标准值的差值在规定的不确定度内,表明装置和操作正常。否则,需查明原因,彻底纠正后才能进行正式测定。
按下式计算空气干燥煤样的碳、氢含量:
岩石矿物分析第四分册资源与环境调查分析技术
式中:Cad为空气干燥煤样中碳的质量分数,%;Had为空气干燥煤样氢的质量分数,%;m为空气干燥煤样的质量,g;m1为二氧化碳吸收管的增量,g;m2为水分吸收管的增量,g;m3为空白值,g;0.2729为由二氧化碳换算成碳的因数;0.1119为由水换算成氢的因数;Mad为空气干燥煤样的水分的质量分数。
碳酸盐二氧化碳含量大于2%时,则:
岩石矿物分析第四分册资源与环境调查分析技术
式中:w(CO2,ad)为空气干燥煤样的碳酸盐二氧化碳的质量分数。
73.11.1.2 电量-重量法
方法提要
一定量煤样在氧气流中燃烧,生成的水与五氧化二磷反应生成偏磷酸,电解偏磷酸,根据电解所消耗的电量,计算煤中氢含量;生成的二氧化碳以二氧化碳吸收剂吸收,由吸收剂的增量,计算煤中碳含量。煤样燃烧后生成的硫氧化物和氯用高锰酸银热解产物除去,氮氧化物用粒状二氧化锰除去,以消除它们对碳测定的干扰。方法适用于褐煤、烟煤和无烟煤碳、氢的测定。
仪器装置
电量-重量法碳氢测定仪(图73.40)由氧气净化系统、燃烧装置、铂-五氧化二磷电解池、电量积分器和吸收系统等构成。
图73.40 电量-重量法碳氢测定仪示意图
氧气净化系统 净化炉,长约 300mm,炉外径约 100mm,炉膛直径约 25mm 的管式电炉,可控温 (800 ± 10) ℃。净化管,长约 500mm,外径约 22mm 的石英管或素瓷管。气体干燥管,3 个,容量约 150mL 的玻璃管。氧气流量计,测量范围 0~150mL/min。
燃烧装置 燃烧炉和催化炉,长约 450mm,炉外径约 100mm,炉膛直径约 25mm 连成一体的二节管式炉,其中催化段长约 150mm,可控温在 (300 ± 10) ℃,燃烧段长约300mm,可控温在 (850 ± 10) ℃ 。
燃烧管 总长约 650mm,一端外径约 22mm、内径约 19mm、长约 610mm,距管口约100mm 处接有外径约 8mm、内径约 6mm、长约 50mm 的支管; 另一端外径约 7mm、内径约 3mm、长约 40mm 的异径石英管 (图73.41) 。
图73.41 燃烧管示意图(数字单位 mm)
燃烧舟 长 70~77mm 瓷舟。新舟使用前应在约 850℃下灼烧 2h。
带推棒的橡皮塞 (图73.42) 由镍铬丝推棒1 (直径约2mm,长约700mm,一端卷成直径约 10mm 的圆环) 、翻胶帽 2、硅橡胶管 3 (内径约 6mm,外径约 11mm) 、玻璃管 5(外径约 7mm,长约 60mm) 、橡皮塞 4 等组成。在橡皮塞上打一直径约 6mm 的孔,将玻璃管的一端穿过孔并伸出约 2mm; 玻璃管的另一端通过硅橡胶管与翻胶帽紧密连接,在翻胶帽的正中穿一小孔,使镍铬丝推棒的一端通过玻璃管后由翻胶帽上的小孔穿出。
图73.42 带推棒的橡皮塞示意图
镍铬丝钩 直径约 2mm,长约 700mm,一端弯成小钩。
硅橡胶管 内径约 5mm,外径约 9mm。
聚氯乙烯软管或聚四氟乙烯管 内径约 6mm,外径约 8mm。
电解池 长约100mm、外径约8mm、内径约5mm 的专用电解池 (图73.43) ,铂丝间距约 0.3mm,池内表面涂有五氧化二磷。电解池外有外径约 50mm、内径 9~10mm、长约80mm 的冷却水套。
电量积分器 电解电流 50~700mA 范围内积分线性误差小于 ±0.1%; 配有 4 位数字显示器,数字显示精确到 0.001mg 氢。
吸收系统 除氮 U 型管,直径约 15mm 的 U 型管,内装粒状二氧化锰,装试剂部分高 100~120mm,两端堵以硅酸铝棉。吸水 U 型管,直径约 15mm 的 U 型管,内装无水高氯酸镁或无水氧化钙,装试剂部分高 100~120mm。吸收二氧化碳 U 型管,2 个,直径约15mm 的 U 型管,4 /5 装碱石棉,1 /5 装无水高氯酸镁或无水氯化钙,装试剂部分高 100~120mm。气泡计,容量约 10mL,内盛少许硫酸。
图73.43 Pt-P2O5电解池示意图
带磨口的玻璃管或小型干燥器 (不放干燥剂) 。
试剂
碱石棉 化学纯,粒度 1~2mm; 或碱石灰,化学纯,粒度 0.5~2mm。
无水氯化钙 粒度 2~5mm。
无水高氯酸镁 粒度 1~3mm。
氧化铜 线状 (长约 5mm) 。
三氧化钨。
粒状二氧化锰 制法与 73.11.1.1 相同。
高锰酸银热分解产物 制法与 73.11.1.1 相同。
真空硅脂。
变色硅胶 化学纯。
硅酸铝棉 工业品。
硫酸。
无水乙醇。
涂液 磷酸与丙酮以 (3 +7) 比例混和。
氧气 氧气钢瓶需配有可调节流量的带减压阀的压力表(可使用医用氧气吸入器) 。
测定准备
1) 净化系统各容器的充填和连接。净化管内充填线状氧化铜,装填部分长约280mm,两端堵以硅酸铝棉。3 个气体干燥管内按氧气流入方向依次充填变色硅胶、碱石棉和无水高氯酸镁。按顺序将净化系统各容器连接好。
2) 燃烧管的填充和安装。在燃烧管细颈端先充填约 10mm 硅酸铝棉,然后填入约100mm 高锰酸银热解产物,最后再充填约 10mm 硅酸铝棉。将带推棒的橡皮塞塞住燃烧管入口端并将燃烧管放入燃烧炉内,使装填部分的位置在催化段。
3) 电解池涂膜及五氧化二磷膜的生成。先用外径约 5mm 的软毛刷和洗涤剂清洗电解池内壁,然后依次用自来水、蒸馏水冲洗,最后用丙酮或无水乙醇清洗并用热风吹干。此时,电解池两铂极间电阻应为无穷大。
将电解池前端向上竖起,从前端滴入涂液。涂液沿池内壁流下,当涂液流到池体 1/3处时,立即倒转电解池,使多余的涂液流出,并用滤纸拭净池口。边转动电解池,边用冷风吹至无丙酮气味。以同样方法涂液 3 次,但第2 次使涂液流到池体的2/3 处时,倒出多余涂液; 第 3 次使涂液流到距池体尾端约 10mm 处时,倒出多余的涂液。
接通氧气,调节氧气流量约为 80mL/min。用硅橡胶管将涂液后的电解池与燃烧管细颈端口对口连接。装好电解池冷却水套,通入冷却水,将电解池两电极与电解电源引线相接。选择 10V 电压,启动电解,每隔 3min 改变电解电源极性 1 次,直至电解终点。选择24V 电压启动电解,直至电解终点; 改变电解电源极性,启动电解,至电解终点。如此重复 4~5 次,五氧化二磷膜形成完毕; 或按涂膜键自动涂膜。
4) 吸收系统各容器的充填和连接。把按要求准备的吸收系统各容器按顺序连接好,氧气净化系统与燃烧管间以聚氯乙烯软管或聚四氟乙烯管连接,电解池与 U 型管及 U 型管与 U 型管间均以硅橡胶管连接。当出现下列现象时,应更换 U 型管中试剂,或清洗电解池: 某次试验后,第 2 个吸收二氧化碳 U 型管的质量增加 50mg 以上时,应更换第 1 个U 型管; 二氧化锰、无水高氯酸镁或无水氯化钙一般使用约 100 次应更换。电解池使用100 次左右或发现电解池有拖尾等现象时,应清洗电解池,重新涂膜。
5) 测定仪整个系统的气密性检查。将仪器按图73.40 所示连接好。将所有 U 型管磨口塞旋开,与仪器相连,接通氧气下调节氧气流量约为 80mL/min。然后关闭靠近气泡计处 U 型管磨口塞,此时若氧气流量降至 20mL/min 以下,表明整个系统气密; 否则,应逐个检查 U 型管的各个磨口塞,查出漏气处,予以解决。气密性检查时间不宜过长,以免 U型管磨口塞因系统压力过大而弹开。
6) 测定仪可靠性的检验。为了检查测定仪是否可靠,可称取 0.070~ 0.075g 标准煤样 (精确至 0.0001g) 进行碳、氢测定。如果实测的碳、氢值与标准值的差值不超过标准煤样规定的不确定度,并且无明显系统偏差,表明测定仪可用,否则需查明原因并纠正后才能进行正式测定。
分析步骤
选定电解电源极性 (每天应互换 1 次) ,通入氧气并将流量调节约为 80mL/min,接通冷却水,通电升温。升温同时,接上吸收二氧化碳 U 型管 (应先将 U 型管磨口塞开启)和气泡计,使氧气流量保持约 80mL/min,按下电解键 (或预处理键) 至终点。然后,每隔 2~3min 按一次电解键 (或预处理键) 。10min 后取下吸收二氧化碳 U 型管,关闭所有U 型管磨口塞,在天平旁放置 10min 左右,称量。然后再与系统相连,重复上述试验,直到两个吸收二氧化碳 U 型管质量变化不超过 0.0005g 为止。
将燃烧炉、净化炉和催化炉温度控制在指定温度。将煤样以转瓶法混和均匀,在预先灼烧过的燃烧舟中称取 0.070~0.075g (精确至 0.0001g) 粒度小于 0.2mm 的空气干燥煤样,并均匀铺平。在煤样上盖一层三氧化钨。如不立即测定,可把燃烧舟暂存入不带干燥剂的密闭容器中。
接上质量恒定的吸收二氧化碳 U 型管,保持氧气流量约 80mL/min,启动电解至电解终点。打开带有镍铬丝推棒的橡皮塞,迅速将燃烧舟放入燃烧管入口端,塞上带推棒的橡皮塞,将氢积分值和时间计数器清零。用推棒推动燃烧舟,使其一半进入燃烧炉口。煤样燃烧后 (一般 30s) ,按电解键 (或测定键) ,当煤样燃烧平稳,将全舟推入炉口,停留2min 左右,再将燃烧舟推入高温带并立即拉回推棒 (不要让推棒红热部分拉到近橡皮塞处,以免使橡皮塞过热分解) 。约 10min 后 (电解达到终点,否则需适当延长时间) ,取下吸收二氧化碳 U 型管,关闭其磨口塞,在天平旁放置约10min 后称量。第2 个吸收二氧化碳 U 形管质量变化小于 0.0005g,计算时忽略。记录电量积分器显示的氢的质量 (mg) 。打开带推棒的橡皮塞,用镍铬丝钩取出燃烧舟,塞上带推棒的橡皮塞。
空白值的测定。氢空白值的测定可与吸收二氧化碳 U 型管的恒量试验同时进行,也可在碳氢测定之后进行。在燃烧炉、净化炉和催化炉达到指定温度后,保持氧气流量约为80mL / min,启动电解到终点。在一个预先灼烧过的燃烧舟中加入三氧化钨 (数量与煤样分析时相当) ,打开带推棒的橡皮塞,放入燃烧舟,塞紧橡皮塞。将氢积分值和时间计数清零。用推棒直接将燃烧舟推到高温带,立即拉回推棒。按空白键或9min 后按下电解键。到达电解终点后,记录电量积分器显示的氢质量 (mg) 。重复上述操作,直至相邻两次空白测定值相差不超过 0.050mg,取这两次测定的平均值作为当天氢的空白值。
对于微计算机控制的测定仪可按照说明书规定的方法操作。
按下式计算空气干燥基煤样的碳氢含量:
岩石矿物分析第四分册资源与环境调查分析技术
式中:Cad为空气干燥煤样中碳的质量分数,%;Had为空气干燥煤样中氢的质量分数,%;m为空气干燥煤样的质量,g;m1为吸收二氧化碳U型管的增量,g;m2为电量积分器显示的氢值,mg;m3为电量积分器显示的氢空白值,mg;0.2729为将二氧化碳换算成碳的因数;0.1119为将水换算成氢的因数;Mad为空气干燥煤样水分的质量分数。
当需要测定有机碳时,按式(73.71)计算有机碳的含量。
3. 农药残留物的分析方法
国外医学卫生学分册
1998年 第25卷 第3期
食物中农药残留分析方法的研究进展
中国预防医学科学院营养与食品卫生研究所 (北京 100050)
赵云峰综述 陈建民1 王绪卿审校
摘要 本文综述了近年来农药残留分析的前处理技术和测定方法的研究进展,着重介绍固相萃取法、凝胶渗透色谱法和超临界流体萃取法等前处理技术及气相色谱-质谱法、液相色谱-质谱法、超临界流体色谱法等色谱测定方法以及毛细管电泳和生物技术在农药残留分析中的应用。
关键词 食物 农药残留 多残留分析方法
食品的农药残留分析是在复杂的基质中对目标化合物进行鉴别和定量。由于食品中农药残留水平一般在mg/kg~μg/kg之间,因此要求分析方法灵敏度高、特异性强。对于未知农药施用史的食物样品,经常采用多组分残留分析的方法。由于各类食物样品组成成分复杂,而且不同农药品种的理化性质存在差异,因而没有一种多组分残留分析方法能够覆盖所有的农药品种。
近年来,农药残留分析方法趋向于选择性强、分辨率高和检测限低以及操作简便。主要表现在由单一种类农药多残留分析向多品种农药多残留分析发展,而且对农药的代谢物、降解物以及轭合物的残留分析给予了更多的关注[1]。本文简要综述近几年来农药残留分析技术及方法学的进展。
1 食物中农药残留的特点及样品前处理技术食物样品组成复杂,基质成分与目标物含量相差悬殊,且存在农药的同系物、异构体、降解产物、代谢产物以及轭合物的影响。由于环境的迁移作用,环境中残留的各种化学污染物也可能在农作物组织中蓄积,从而增加了食品农药残留分析的难度。农药残留测定之前要有适合于各种食品和目标物理化性质的萃取、净化、浓缩等预处理步骤,这些预处理过程往往在分析中起着主要作用。食物样品中农药提取、净化等前处理方法有其特殊性,对于不同性质样品中的不同目标物需要采用不同的前处理技术。
食品农药残留分析中,食物样品的净化要尽可能的除去与目标物同时存在的杂质,以减少色谱图中的干扰峰,同时避免杂质对色谱柱和检测器的污染。食物样品的净化,尤其是含脂质较多的食物样品净化,一直是分析工作者研究的重点,除采用常规的吸附柱分离、液-液分配、共沸蒸馏等净化措施外,更多的采用现代分离分析技术。
在农药残留分析技术发展的历程中,对气相色谱(gc)和液相色谱(lc)等各种仪器的分析速度、分辨能力和自动化程度进行了大量的研究,相比之下,对样品的制备技术关注不够。在很长的时间内,一直沿用经典的索氏提取、液-液分配、florisil、硅胶、硅藻土及氧化铝柱色谱、共沸蒸馏等技术,尽管这些技术不需要昂贵的设备和特殊仪器,但却是整个分析过程中最费时费力、最容易引起误差的环节,且大量有机溶剂的使用,造成了对环境的污染。进入90年代后,样品萃取净化技术有了较快的发展,最受普遍重视的如固相萃取法(spe)、凝胶渗透色谱法(gpc)及超临界流体萃取法(sfe),得到不断改进和应用。为此,样品前处理技术的研究成为分析化学领域中最为活跃的前沿课题之一[2]。
1.1 固相萃取法自美国waters公司的sep-pak投放市场后,固相萃取法(spe)技术取得很大进步,各种c8、c18、腈基、氨基和其它特殊填料的微柱相继得到应用。schenck[4]用florisil微柱净化,测定食物中有机氯农药(ocs)残留;wan[5]简化了植物油中ocs残留分析时硅胶柱的净化方法,减少了有机溶剂的使用;armishaw[6]比较了动物脂肪ocs残留测定时,gpc、吹扫共馏、florisil柱色谱的净化;bentabol[7]用半制备c18柱分离食用油中的ocs和有机磷农药(ops)。gillespie[8]用多柱spe净化植物油和牛脂中的ocs及ops,油或脂质样品用己烷溶解后,首先经diatoma-ceousearth(extrelutqe)柱和c18键合硅胶(ods)微柱处理,洗脱液分为两部分,一份浓缩后,丙酮溶解,用gc-火焰光度检测器(fpd)测定ops,另一份经氧化铝微柱处理,进一步除去脂质,用gc-电子捕获检测器(ecd)测定ocs。
1.2 凝胶渗透色谱法凝胶渗透色谱法(gpc)是一种快速的净化技术,应用于农药残留分析中脂类提取物与农药的分离,是含脂类食物样品农药残留分析的主要净化手段。stienwandter[9]总结了凝胶色谱在农药残留分析中的应用;李洪波[10]用交联聚苯乙烯凝胶(ngx-01)净化食物样品中ops;李怡[11]用bio-beadss-x3净化乳品中氨基甲酸酯类农药(nmcs)。chamberlain[12]采用10%乙酸乙酯和石油醚洗脱,以bio-beadss-x3解决了脂肪和油样的分离。hong[13]用溶剂提取,bio-beadss-x3净化,gc-ecd-氮磷检测器(npd)测定大豆和大米样品25种农药,并用gc-ms-选择离子监测(sim)确证。florisil、氧化铝及硅胶柱主要用于非脂质食品净化处理,采用常规的净化方法,不能保证极性农药ops在脂质性食品中的定量回收。sannino[14]用bio-beadss-x3的gpc净化方法,分析了7个脂质性食品中39种ops及其代谢产物,并进一步进行gc-ms-sim确证和定量。hop-per[15]用gpc净化,gc测定了谷物中ops、ocs及拟除虫菊酯;holstege[16]采用凝胶渗透色谱法净化,进行了43种ops、17种ocs及11种nmcs多残留分析。
1.3 超临界流体萃取法继超临界流体色谱(sfc)之后,90年代出现了超临界流体萃取技术(sfe)。常规分析时,需要用有机溶剂提取样品,提取的样品量为50~100g,在进行溶剂浓缩的过程中,可能使易挥发的农药损失或使某些农药降解。sfe的样品用量少,样品提取在低温下进行,避免了农药的损失及降解,大大提高了分析方法的可靠性,并使得分析时间缩短,排除了有机溶剂的污染。lehotay[17]建立了食品中农药多残留分析的sfe方法;snyder[18]在ocs和ops测定中,比较了用3%甲醇为改性剂的co2净化与索氏提取法的效率。对于含水量高的样品,sfe的使用受到限制,为了提高sfe的使用效率,采用冻干样品和混合样品,以吸收水分。valverde-garcia[19]用硫酸镁为干燥剂吸收样品中的水分,以sfe提取甲胺磷;用无水硫酸镁制备蔬菜样品(硫酸镁∶样品=5∶7),用sfe提取辣椒和西红柿中非极性和中极性农药。sfe是食品农药多残留分析中具有发展前景的新技术,可以替代溶剂提取方法,但在常规分析中还未得到广泛应用。
2 测定方法色谱法仍是农药残留分析的常用方法。对于挥发性农药常用gc测定;对于挥发性差、极性和热不稳定性的农药则采用lc测定。目前,在农药残留分析中使用的方法有gc、高效液相色谱法(hplc)、气相色谱-质谱法(gc-ms)、液相色谱-质谱法(lc-ms)、sfc及毛细管电泳法(ce)和酶联免疫吸附测定法(elisa)等。fodor-csorba[20]综述了食物中农药分析的色谱方法,概括了薄层色谱法(tlc)、gc、sfc及hplc在食物样品分析中的应用;leim[21]总结了脂类食物中有机农药的分析方法;sharp[22]总结了谷物中ops、拟除虫菊酯和nmcs的提取、净化及测定方法;torres[23]总结了水果、蔬菜中农药残留的测定方法;宫田晶弘[24]用gc、gc-ms-电子轰击源(ei)及gc-离子阱质谱(itms)-化学电离源(ci)测定苹果、香蕉、小麦及大米中的41种ops、23种nmcs,并对三种方法进行了比较。色谱法在农药残留分析中发挥了重要的作用。
2.1 gc法和gc-ms法以非极性或弱极性为固定相的毛细管柱gc得到广泛使用,取代了传统的填充柱gc。gc-ms和gc-ms-ms联用技术日臻成熟,质谱法已成为农药残留分析的常用方法。由于串联质谱(ms-ms)可以减少干扰物的影响,提高仪器的灵敏度,所以ms-ms是化合物结构分析及确证的有效手段。由于gc-离子阱的串联质谱用于农药残留分析时,可得到fg水平的灵敏度,所以离子阱技术将是农药残留分析发展的趋势。lehotay[25]用sfe提取,gc-itms分析了水果、蔬菜中ocs、ops、氨基甲酸酯类农药(mcs)、拟除虫菊酯及其它农药,共46个品种。py-lypiw[26]用gc-单离子检测(msd)分析了18种ocs,最低检出量为10μg/kg;valaerd-garcia[27]用gc-msd检测了蔬菜中噻嗪酮的残留;fillion[28]用乙腈提取水果、蔬菜样品,盐析分层,活性炭柱净化,用gc-msd分析了189种农药残留,并用hplc的荧光检测法测定了10种氨基甲酸酯农药残留。hogendoorn[29]用改良方法分析了2000个水果、蔬菜样品中125种农药。miyahara[30]用sfe净化,gc-itms测定了蔬菜中五氯硝基苯(pcnb)及代谢物的残留;采用sfe与gc-itms联用检测蔬菜中六氯苯(hcb)的残留。但是,gc-itms用于常规的定量测定还有待进一步发展。
2.2 hplc法及lc-ms法对于受热易分解或失去活性的物质,不能直接或不适合用gc分析。正是由于许多有机化合物的强极性、热不稳定性、高分子量和低挥发性等原因,从而推动了液相色谱技术的进步。
农药残留分析中,通常使用c8及c18反相高效液相色谱法,而以硅胶、腈基、氨基为极性键合相的色谱柱则用于特定的分析;短柱或小口径柱可提高分析速度。除采用固定波长或可变波长的紫外检测器外,二极管矩列紫外检测器和质谱检测器可用于结构鉴定。
hplc与sfe联用可以提高分析方法的选择性,并使净化与分析过程结合,减少中间步骤造成被分析组分的丢失。hplc与ms联用研究起步于70年代,与gc-ms相比,lc-ms的衔接更为复杂,目前lc-ms联用已出现多种接口方式,如电喷雾接口(es)、热喷雾接口(ts)、离子喷雾接口(is)、大气压化学电离接口(apci)以及粒子束接口(pb)。lc与快原子轰击质谱(fab-ms)以及傅立叶变换红外光谱联用技术(ftir)在农药残留分析中也得到应用。
hplc和lc-ms广泛应用于不易挥发及热不稳定化合物的分析,是农药残留定性、定量分析的有效手段,尤其是氨基甲酸酯农药(mcs)的检测。yang[31]总结了nmcs残留分析的进展;krause[32]建立了氨基甲酸酯的荧光测定法,食物样品用甲醇提取,乙腈-二氯甲烷液液分配,活性炭-celite柱净化,反相lc分离,邻苯二醛衍生,检测限为5~50μg/kg,结果用ms确证。seiber[33]采用perfluorracyl衍生,分析了谷物中的氨基甲酸酯;lau[34]用trifluoroacetyl衍生分析了谷物中的混杀威;bakowski[35]用heptafluo-robutyryl衍生,用gc-eims测定了肝组织中10种苯基-n-甲基氨基甲酸酯;ali[36]对牛肉、猪肉和家禽组织的氨基甲酸酯进行分析。liu[37]等用lc-ms对水果、蔬菜中的涕灭威、增效砜等19种农药进行检测,检测限为0.025~1mg/kg。newsome[38]比较了lc-apci-ms和lc-柱后衍生荧光法测定食品中nmcs,在10~100μg/kg范围内,两种检测器的检测结果良好,但由于两种均为非特异性检测器,都存在基质干扰,为了准确测定含量,应使用高分辨的ms进行确证。
2.3 sfc方法sfc是以超临界流体为流动相的色谱方法。超临界流体既具有液体的强溶解性能,适合于分离挥发性差和热不稳定的物质;又具有气体的低粘度和高扩散性能,传质速度快,使得分析速度提高;同时,sfc可以使用gc或hplc的检测器以及与ms、傅立叶变换红外光谱仪(ftir)联用。毛细管超临界流体色谱(csfc)的进展,促进了sfc技术的进步。csfc-ms是近年来发展的联用技术,由于csfc克服了gc和lc的不足且具有二者的优点,所以csfc-ms联用较gc-ms和lc-ms联用有更多的优越性。csfc-ms主要用于大分子量、热不稳定的复杂混合物分析,尤其对热不稳定的物质,不能用gc直接分析,而lc的选择性和灵敏度又不够,如采用csfc-ms,可较方便地分离检测。农药中含有s、p等杂原子时,极性较强,用gc和lc难于分析,痕量分析尤为困难。采用cs-fc结合选择性强的检测器,如fpd、npd、ecd等,是农药痕量分析的理想方法。在co2中添加1%甲醇作为改性剂,使极性农药得到很好地分离,消除了色谱峰的拖尾。但是农药残留分析中,sfc主要用于非极性或弱极性的物质,如何分析极性物质,将是今后的研究方向[39]。
2.4 tlc方法tlc无需特殊设备,简便易行,可同时分析多个样品,多用于复杂混合物的分离和筛选。tlc除用特殊的显色剂观察斑点颜色和用rf值定性外,与其它技术的联用不仅可以定性,而且可对样品中被分离的一种或多种成分进行定量分析。80年代发展起来的高效薄层色谱法(hptlc)与扫描技术结合,是一种易于建立和掌握的半定量技术。欧盟国家采用自动化多通道展开技术,用hptlc定量筛选了饮水中256种农药残留。
2.5 ce方法由于ce具有分离效率高、快速、样品用量少等特点,近年来得到了迅速发展,各种分离模式相继建立,高性能的商品仪器不断推向市场。对于无电荷的分子,开发了胶束电动色谱法(mekc),拓宽了ce的应用范围。毛细管电泳与质谱联用(ce-ms)可用于谷物和其它基质中带电荷基团的农药及其代谢物残留检测。ce可与原子分光光度法联用[2],如与原子吸收分光光度计(aas)、电感耦合等离子体-原子发射光谱仪(icp-aes)和icp-ms联用。cancalon[40]综述了ce和ce-ms在农药残留分析中的应用。
2.6 生物技术生物技术在农药残留分析中的应用不断增加,尤其是乳制品工业[41]。生物技术包括免疫测定法、生物测定法和生物传感器技术及免疫亲和色谱法。免疫测定法取决于抗体与底物的相互作用,目标物与抗体结合后,酶促反应产生颜色变化,用比色法测定目标物浓度。kramer[42]总结了生物传感器和免疫传感器的构件、技术特点及其应用。
抗体与抗原的特异结合为农药残留分析提供了技术保证,许多市售试剂盒的应用,使免疫测定成为各类农药残留检测的有效手段,使农药残留分析时间缩短,操作人员劳动负荷量减少。免疫方法常与其它技术联用[43],如elisa与传统的提取和净化方法、sfe、hplc及gc-ms联用;免疫亲和色谱法与ms联用以及在机器人辅助下自动的免疫化学方法都有应用报道。有报道[41]用sfe-elisa分析了大麦中杀螟硫磷、甲基毒死蜱及甲基嘧啶磷;用hplc-elisa测定水果、蔬菜中噻菌灵。由于免疫分析成本低、快速、可靠,且传感器灵敏度高,并有自动化装置,因而广泛用于农药残留的监测及人与环境接触等研究。
3 结 语
随着各种新技术的应用,农药残留分析方法日趋系统化、规范化,并向小型化、自动化方向发展。同时,由于在线联用技术可避免样品转移的损失,减少各种人为的偶然误差,因此将是农药残留分析方法研究的重点。