地质灾害风险性是指地质灾害发生不同险情(危险等级)的概率。
①地质灾害危险性评价指标,根据国务院地质灾害防治条例,其危险等级是根据灾情大小或险情大小来判定的。评价指标为灾情+险情。
②地质灾害风险性评价技术路线:
a)地质灾害风险概率(暴雨频率)→b)预测地质灾害危险区范围→c)地质灾害险情计算,确定其危险等级→d)判定发生该危险等级的概率(风险性)。
③地质灾害风险评估方法:
a)地质灾害危险区范围预测方法:
一一定性分析方法
一一半定量分析方法
一一定量计算预测方法
b)地质灾害险情计算方法:
地质灾害危险区内受威胁人数=?受威胁财产=?
一一统计分析计算法
一一层次叠加计算法
参见中国地质灾害风险评价新方法。
B. 崩塌调查评价的技术方法
崩塌地质灾害的调查评价涉及很多技术方法,主要有:遥感图像解译、工程地质测绘、地球物理勘探、钻探、山地工程、室内试验及现场试验、模型试验和模拟试验、动态监测等。
(一)遥感图像解译
1.基本要求
1)遥感图像解译应在搜集资料阶段完成,并编制工程地质解译图,为野外踏勘和设计编写服务。
2)区域性解译采用1∶50000~1∶67000的航片,崩塌体部分选用大比例尺(1∶10000~1∶1000)航片。有条件时,宜采用多时相的彩红外、红外、彩色、黑白、侧视雷达等多种航片进行综合解译。
3)一般采用目视解译,尽可能对航片进行光学处理和数字处理,突出有效信息,提高解译水平和效果。
4)建立不同航片的直接解译标志(形态、大小、阴影、灰阶、色调、花纹图形等)和间接解译标志(水系、植被、土壤、自然景观和人文景观等);进行室内解译,编制解译地质图和像片镶嵌图,规划调查工作和要解决的重点问题。
5)进行解译验证,建立准确的解译标志,同时建立健全解译卡片和验证卡片,以积累详细准确的地质资料。
6)提交的成果为:①解译灾害地质图;②解译卡片;③验证卡片;④典型相片集;⑤解译报告;⑥调查所需的其他解译图件。
2.解译内容
1)划分地貌单元,确立地貌形态、成因类型、微地貌形态及发育特征;确定地貌与地质构造、地层岩性与工程地质条件之间的关系;确定崩塌体产出的地貌单元,分析判断崩塌与地貌的关系。
2)解译崩塌体产出的地层岩性特征。
3)解译崩塌与构造的关系。确定主要构造形迹(褶皱、断层)的分布和规模,与崩塌形成的关系。
4)解译地表水、地下水对崩塌形成及其堆积物稳定性的作用及影响。判定大泉、泉群、地下水溢出带,确定洼地、漏斗、落水洞、天坑等岩溶现象的分布,圈定地表水体分布范围,了解水系发育特征。
5)解译崩塌体边界,推测其厚度和体积,判译其形成机制和类型。根据崩塌区地貌形态、植被情况及彩红外影像特征等,初步分析崩塌的形成时间和稳定状况。
6)推断危岩体将来发生崩塌的体积、范围、方位、位移距离,圈定成灾范围,分析派生灾害,初步进行灾情评估。
(二)工程地质测绘
1.基本要求
1)比例尺的确定:综合区域工程地质测绘为1∶25000~1∶50000;崩塌灾害环境地质测绘初步调查为1∶10000~1∶1000,可行性研究阶段测绘为1∶2000~1∶500。
2)测绘范围:外围环境地质调查,以查明与崩塌体成生有关的地质环境和小区域内崩塌发育规律为准;崩塌体的测绘范围应为其初步判断长宽的1.5~3倍,并应包含其可能造成危害及派生灾害成灾的范围。
3)使用的地形图必须是符合精度要求的同等或大于测绘比例尺的地形图。
4)实测地质体的最小尺寸一般为相应图上的2mm。特别重要的,不足2mm可扩大表示,但须注明实际数据。地质点位与地质界线的误差不应超过图上的2mm。
5)开展测绘之前,应实测地层剖面,建立地层岩性柱状图,确定填图单元。
6)测绘方法采用穿越和追索相结合。重要边界要追索。覆盖地段应采取人工揭露。
7)观测点布置应目的明确、密度合理,崩塌边界、地质构造、裂缝等要有足够的点控制。观测点的类型分为:岩性点、地貌点、地质构造点、裂隙统计点、水文地质点、外动力地质现象点、裂缝调查点、崩塌壁调查点、崩塌体调查点、崩塌变形点、灾情调查统计点、人类工程活动调查点、采样点、试验点、长观点、监测点等。
8)观测点的测量要求:测绘比例尺小于1∶5000时,采用目测和罗盘交会法定位,高程可根据地形图和气压计估算。测绘比例尺大小1∶5000时,必须用仪器测量。重要的观测点、勘探点、监测点,不管比例尺多大,均须用仪器测量。
9)野外记录要求:①采用专门的卡片记录观测点,分类系统编号,卡片编号与地点号一致;②记录须与野外草图相符;③描述应全面又突出重点;④进行点与点之间的路线描述和记录。
10)采集具代表性的岩土样、水样进行鉴定和室内试验。
11)测绘过程应经常校对原始资料,及时进行分析,及时编制各种分析图表,及时进行资料整理和总结,及时发现问题和解决问题,指导下一步工作。
12)测绘工作结束,原始资料整理完毕,应组织野外验收。在全面系统的资料整理和初步分析研究的基础上,应提出以下原始成果:①实际材料图;②野外地质草图;③实测地层柱状图;④实测地层剖面图;⑤观测点记录卡片;⑥山地工程记录表及素描图;⑦长观记录和监测记录;⑧岩土、水样试验成果一览表;⑨照片册;⑩文字总结;瑏瑡数据化的资料。
2.测绘内容
1)岩体工程地质测绘:查明岩体的地质时代、成因类型、岩性、接触关系等。
2)土体工程地质测绘:查明土的粒度成分、矿物成分、密实度或稠度、空隙性、土体结构、成因类型及地质年代等。
3)地貌和斜坡结构调查:①以微地貌调查为主,包括分水岭、山脊、斜坡、谷肩、坡脚、悬崖、沟谷、河谷、河漫滩、阶地、剥蚀面、岩溶微地貌、塌陷地貌和人工地貌等。调查描述各地貌单元的形态特征(面积、长度、宽度、高程、高差、深度、坡度、形体特征及其变化情况)、微地貌的组合特征、过渡关系及相对时代;②重点调查崩塌体产生的地貌单元,侧重于沟谷地貌和斜坡地貌的调查,查明斜坡的结构类型与坡面特征;③分析岩溶地貌、流水地貌与崩塌的关系;④调查人工地貌(采场、水库大坝、道路、人工边坡等)与崩塌的关系。
4)地质构造调查:理清调查区构造轮廓、构造形迹特点,调查褶曲、断层、节理裂隙的位置、产状、规模、力学性质及其与崩塌的关系。
5)新构造运动和地震调研:以收集资料为主。
6)水文地质调查:调查地表水体的位置、范围、动态与地下水的关系,地下水的补、径、排条件,地下水露头的位置、出流特征、动态变化等。在此基础上,综合分析地表水、地下水对崩塌的作用。
7)人类活动调查:调查人类工程活动的现状与规划、人类活动诱发的不良地质现象或地质灾害。
8)崩塌区的调查:①查明崩塌区的地质结构:包括地层岩性、地貌、地质构造、岩土体结构类型、斜坡组构类型及其对崩塌形成的控制和影响。岩土体结构要重点记录软弱夹层、断层、褶曲、裂隙、裂缝、岩溶、采空区、临空区、侧边界、底边界;②查明崩塌区的水文地质特征,包括地表水入渗及产流情况,崩塌体内地下水水量、水质及侵蚀性;③早期崩塌的运移和堆积;④未来崩塌成灾条件下可能的运移和堆积;⑤本次崩塌灾害可能派生的灾害类型(如泥石流、滑坡、涌浪等)和规模、成灾范围、灾情预评估。
9)环境地质体调查:调查崩塌区外的地质体的稳定性,为防治工程持力层选择提供依据。
10)孕灾因素调查:调查与崩塌形成有关的孕灾因素(如降雨、地表水冲蚀、地下水活动、人工爆破、地下开采、水渠渗漏等)的强度与周期。
(三)地球物理勘探
物探技术要求按现行的专业标准执行,主要物探剖面应与工程地质剖面一致。
(四)钻探
1.基本要求
1)要编制钻孔设计书(包括钻孔的目的、类型、深度、结构、钻探工艺等)。
2)钻孔深度应穿过崩塌体底界。进入稳定岩(土)体3m(土体)至5m(岩体)。
3)孔径应满足取心及测试要求。
4)要进行钻空简易水文地质观测。
5)钻孔结束后应作封孔处理,按要求保留岩心。
2.钻孔地质编录
这是最基本的第一手成果资料,应在现场及时地分回次进行记录;要注意残留岩心的分配和岩心采取率的计算;钻孔地质编录应使用统一的表格。
1)岩心的描述:坚硬岩层,应描述岩石名称、颜色、成分、结构、构造、节理裂隙、风化及破碎程度、岩心长度和完整性等;卵、砾层,应描述其名称、颜色、岩性、成分、大小、形状、充填物含量及胶结情况;砂类土层,应描述其名称、颜色、成分、粒度、干湿状态、夹杂物等;粘性土,应描述其名称、颜色、成分、结构特征、可塑性、稠度等。
2)节理裂隙描述:确定节理裂隙类型、成因、连续性、张开程度、充填物、裂隙率;断层描述:断层性质、破碎带宽度(深度)、擦痕、构造岩、岩心完整性、漏水和涌水情况等。
要重视岩溶、裂缝、滑带及软弱夹层的描述和地质编录,水文地质观测记录和钻进异常记录,取样记录。
3.钻探成果
钻孔终孔后,要及时整理并提交钻探成果,包括钻孔设计书、钻孔柱状图、岩心素描图、岩心照片、简易水文地质观测记录、取送样单、钻孔报告书等。
钻孔柱状图的比例尺一般为1∶100至1∶200,以能清楚表示主要地质现象为准。图的内容、样式、标注等应符合相应的规范。
4.钻探方法解决的主要问题
1)查明崩塌体的岩性、地质构造、岩土体结构、风化带、岩溶、边界条件和崩塌体的形态特征、规模。
2)查明崩塌区的水文地质条件,采取地下水样。
3)探测隐伏裂隙、地表裂隙的深度、发育特征、充填情况、充水情况和连通情况。
4)采取岩土体物理力学室内试验样品,进行水文地质野外试验(压水、抽水、注水、扩散试验等)和长期观测,确定水文地质参数,查证崩滑带位置和特征。
5)进行物探综合测井和跨孔测井,扩展探测范围。
6)进行崩塌变形长期监测和施工期变形监测。
(五)山地工程
1.山地工程解决的问题
1)试坑:深度小于3m。用于剥除浮土,揭露基岩,了解岩石及风化情况,或用作载荷试验及渗水试验。
2)探槽:深度一般不超过3m。用于剥除浮土,揭示基岩,多垂直于岩层走向布设。用于追索构造线、断层、崩滑体边界,了解残坡积层的厚度、岩性等。
3)浅井、竖井:浅井深度小于15m,竖井深度大于15m。用于探查风化岩体的划分、岩土体的结构构造、软弱夹层、裂缝和溶洞等,进行原位试验及变形监测。
4)平斜硐:一般断面为1.8m×2m,适用于岩层倾角较陡以及斜坡地段。用于勘查地层岩性、岩体结构构造、断层、裂缝和溶洞等,并用于取样、现场原位试验及现场监测。
5)平巷、石门:没有直接地表出口而与竖井相连接的近水平坑道,不常用。
2.山地工程的地质工作
(1)地质编录内容
1)揭露的岩土体名称、颜色、岩性、结构、构造、层面特征、厚度、接触关系、地质时代、成因类型、产状。软弱夹层应放大比例尺进行素描,并注意其延伸性和稳定性。
2)岩石风化特征及风化卸荷带的划分,风化与裂隙、裂缝的关系。
3)断层:产状、规模、断距、断层形态与展布特征、破碎带的宽度、构造岩、两盘岩性、断层性质等。
4)裂缝、裂隙:逐条描绘裂缝及贯穿性较好的节理,记录其性质、壁面特征、成因、裂缝张开、闭合情况、充填情况、连通情况、相互切割关系、错动变形情况、渗漏水情况。
5)崩滑带及重力变形带作为描述的重点,放大表示。要描述其厚度、岩性、物质组成、构造岩、产状、含水情况等。
6)水文地质现象:注意滴水点、涌水点、渗水点、连通试验出水点、临时出水点。关注其产出位置、水量,与裂缝、裂隙、岩溶及老窿的关系,水量与降雨的关系。
7)记录各种试验点、物探点、长观点、取样点、拍照点、监测点的位置、作用、层位、岩性及有关的地质情况。
(2)地质素描图的有关规定
1)比例尺一般为1∶20~1∶100。
2)探槽的素描绘制一壁一底的展示图。若两壁地质现象不同,则绘制两壁素描图。槽底长度可用水平投影,槽壁按实际长度和坡度绘制,也可采用壁与底平行展开法。
3)浅井、竖井的素描,展示图一般作相邻的两壁,平行展开,注明壁的方位。圆井展示图以90°等分分开,取相邻两壁平行展开绘制,斜井展示图需注明其斜度。
4)平硐素描展示图绘制洞顶和两壁。展开格式为以洞顶为准,两壁上掀的俯视展开法。当洞向改变时,需注明转折前进方向,洞顶连续绘制,两壁转折时凸出侧呈三角形撕裂叉口。洞深计算以洞顶中心线为主。洞顶坡度一般用高差曲线表示。
5)开挖过程中的编录:及时记录掘进中遇到的裂缝、滑带、出水点、水量、顶底板变形等现象。一般隔5m作一个掌子面素描图。对于围岩失稳而必须支护的地段,应及时进行素描、拍照、录像、采样及埋设监测仪器。
(3)取样及原位试验
按有关规定和设计要求,原位试验硐段视需要进行地质素描及试件素描。
(4)录像
有条件应对重型山地工程进行录像。录像时要记录方位及主要地质内容。
3.山地工程提交的成果
地质素描图、重要地段施工记录、照片集、录像、取样送样单、各种点位记录、重型山地工程勘查小结等。
(六)试验
目的是查明崩塌地质体及其赋存环境,为稳定性评价、模型试验、模拟试验和防治工程设计提供必须的岩土物理力学参数和水文地质参数。
1.试验工作布置原则
1)岩土成分鉴定和基本物理性质、水理性质测试,宜以岩性层或工程地质组、段为基本单元,每单元各取3~5组。
2)测试工作的重点应放在崩滑带。崩滑带的力学属性具有不均一性,应重点测试主要软弱面(最弱面)。要对崩滑带进行面上的控制。参与统计的力学指标数不宜小于6个。
3)实验工作应与其他工作紧密结合,充分利用其他手段进行取样和试验。如标准贯入试验、旁压试验、深部采样和水文地质试验可充分利用钻探;表层采样和原位试验可充分利用山地工程。
4)试验工作的布置应室内、现场相结合,现场试验耗资大且限制条件多,不宜过多投入,要根据工作阶段及实际需要合理安排。
5)对于初步选定的防治工程持力层的岩、土体,可根据防治工程的类型、荷载、受力方式和可能产生的变形形式选择测试项目。如评价持力层的抗滑稳定性、岩体抗拉稳定性、地基承载力和抗滑定性等。
2.试验内容和方法
试验的对象、内容和方法,取决于工作阶段及其精度要求。
1)初勘阶段:对崩塌—危岩体,试验要能满足评价其变形破坏特征和稳定性计算。对于相关的环境岩体(周边岩体、崩塌位移作用的地质体、防治工程持力岩土体、可能危及崩塌体的其他灾害岩土体等),试验以能满足其稳定性和环境地质问题的定性评价为主。这个阶段以收集资料和室内试验为主。
2)预可行阶段:对崩塌—危岩体要进行分析和稳定性计算所需的测试。对相关环境岩体要进行稳定性评价等所需的简要测试。对持力岩体要进行定性或半定量分析评价所需的有关简要试验。方法以现场测试为主,同时进行相应的室内试验。
3)可行性研究阶段:对崩塌体要进行较为详细的试验,为变形分析、稳定性计算、模型试验和模拟试验提供所需的参数。对相关环境岩体,进行简要试验,以满足稳定性定性评价和环境地质问题定性研究的需要。对于持力岩体,进行一定的试验,为稳定性计算和防治工程方案设计提供所需的参数。试验方法以现场测试为主,同时进行相应的室内试验。
3.试验项目的选择
应根据崩塌的失稳机制和变形破坏的力学机制分析,选择必须的试验项目。
1)滑移式崩塌的测试项目为:①岩土成分、物理性质、水理性质;②弹性波速;③弱面抗剪强度;④水文地质试验。
2)倾倒式崩塌的测试项目为:①岩土成分、物理性质、水理性质;②弹性波速;③底部弱面抗拉强度;④岩块间岩面摩擦强度;⑤岩体抗拉强度。
3)拉裂式崩塌的测试项目为:①岩土体成分和物理性质;②抗拉强度。
4)鼓胀式崩塌的测试项目为:①岩石成分、物理性质、水理性质;②弹性波速;③底部软弱层无侧限抗压强度。
5)错断式崩塌的测试项目为:①岩石成分、物理性质、水理性质;②弹性波速;③底部岩土体抗剪强度。
4.测试方法和测试条件的选择
要根据崩塌岩土体的特征和赋存环境选择适宜的测试方法和测试条件。
1)室内渗透试验适用于砂性土、粘性土。混合土和碎石土应考虑现场试验。
2)室内压缩试验适用于粉土和粘性土,其他土类应选择现场试验。
3)室内直剪试验适用于粘性土和砂土类(样品中大于2mm的砾、块石均要捡出)。角砾状滑带土或级配混杂的碎屑状滑带土宜考虑现场试验。
4)土样中粒径大于10mm的颗粒较多时,不宜做室内三轴剪切试验。宜选择现场实试验。
5)砂类土、粘性土和黄土类宜采用静力触探。
6)浅埋防治工程选用的地基土,可采用承压板压缩试验;埋深较大(5~15m)的地基土,宜采用螺旋板荷载试验或旁压试验。
7)土体崩塌不能采用钻孔压水试验;崩塌体内有一定水位和水量时,可进行提水试验或适当的抽水试验;崩塌体内无水或微含水条件下,稳定条件允许时可采用控制性钻孔注水试验或地表渗水试验。
8)在岩体中进行现场试验难度极大,应根据弹性波观测和室内试验作选择。
9)风化岩体和软岩土可作预钻式旁压试验。
10)尚未形成贯通性弱面的危岩体应进行现场直剪试验;沿一定弱面滑移的危岩体应进行现场直剪试验。
11)水库型岩崩-危岩体,岩体裂隙发育时,考虑水库高水位淹没部分危岩体,可作抽水试验或钻孔压水试验。作压水试验前,须论证其是否影响危岩体稳定性。
12)人工快速对开裂岩土崩塌体裂缝内注水进行充水试验和连通试验,是十分危险且有害的,任何情况下都不能进行。
5.试验成果的分析应用
承担试验工作的单位应提交对崩塌地质体的综合测试报告,内容包括:①测试对象、试验方案、试验项目的确定及依据;②试验要求及有关规范;③试验技术及试验过程(试验概述、试件制备、试件数量及特征、试验仪器、试验程序、成果整理);④试验成果及综合分析;⑤试验成果建议值。
试验成果只能作为稳定性计算和防治工程设计的参考。计算参数及设计参数取值应在反演分析及其他分析的基础上,结合试验成果、模型试验、模拟试验和专家经验等予以综合确定。
(七)动态监测
1.动态监测的目的和任务
1)动态监测的目的:①评价地质灾害的活动性及稳定性;②通过监测崩滑变形块体变形的分布、规模、位移方式、方向和速率等,为分析崩塌体的变形特征、变形机制,进行稳定性评价服务,同时为防治工程设计提供重要依据;③为勘查施工安全提供预警预报,对重型山地工程施工对崩塌体的扰动及时反馈,控制勘查施工部位和施工强度,为防治工程设计提供参考;④为今后建站进行长期监测奠定良好的基础。
2)动态监测的任务:①查明崩塌体正在变形破坏的主要块体、主要部位、主要破坏方式、主要变形方向和变形速率;②进一步认识崩滑体的形体特征,分析其变形规律、发展趋势、形成机制,分析评价崩塌体的稳定性和论证防治工程设计;③监测崩塌相关成灾因素(如降雨、地表水、地下水和人类活动等)及其强度,分析评价它们对崩塌体稳定性的影响。
2.动态监测的内容与方法
(1)绝对位移监测
1)监测内容:崩塌体测点的三维坐标监测,得出测点的三维变形位移量、位移方法与位移速率。
2)监测方法:大地测量法、GPS测量法、近景摄影测量法、激光全息摄影法和激光散斑法。
(2)相对位移监测
1)监测内容:相对位移监测是设点量测崩滑体重点变形部位点与点之间相对位移变化(张开、闭合、下沉、抬升和错动等)的一种常用变形监测方法。主要用于裂缝、崩滑带和采空区顶底板等部位的监测,是崩塌监测的主要内容。
2)监测方法:简易监测法(作标记或埋桩,用钢尺等定期直接测量)、机测法(采用机械式仪表对裂缝、滑带和顶底板进行位移或沉降监测)、电测法(常用电感调频式位移计监测)。
(3)倾斜监测
地面倾斜监测:监测内容为崩滑体地面倾斜方向和倾角变化。监测仪器有盘式倾斜仪、杆式倾斜仪和T字形倾斜仪。
深部倾斜监测:利用钻孔倾斜仪测量崩滑体内钻孔倾斜变形反求各孔段水平位移。
(4)声发射监测
1)监测内容:检测岩体破裂时产生的声发射信号,用以判断岩体变形及稳定状况,并进行预测预报。
2)监测方法:采用进口或国产的声发射仪、地音仪等进行监测。
(5)地应力观测
1)观测内容:测量崩滑体内地应力的变化情况,分辨拉力区、压力区及压力变化,用以推断岩体变形。
2)监测方法:常用WL-60型应力计,YJ-73型三向压磁应力计等仪器监测。
(6)地下水监测
1)监测内容:对测区内的地下水露头进行系统的水位、水量、水温和水质等项目的长期监测。掌握区内地下水变化规律,分析地下水与地表水及大气降水的关系,进行地下水的动态特征与崩塌体变形的相关分析,为稳定性评价和防治工程设计提供水文地质资料。
2)监测方法:利用监测盅、水位自动记录仪、孔隙水压计、钻孔渗压计、测流仪、水温计、测流堰和取样等,监测泉、井、坑、钻孔、平斜硐与竖井等地下水露头。
3)适用范围:当崩塌变形破坏与地下水具有相关性,在雨季或地表水位抬升时崩塌体内具有地下水,应予以监测。
(7)地表水监测
1)监测内容:监测与崩塌相关的沟、溪、河的水位、流速、流量,分析其与地下水的联系、与降雨量的联系。
2)监测方法:利用水位标尺、水位自动记录仪、测流堰等进行监测。
(8)常规气象监测
1)监测内容及仪器:利用常规气象监测仪器(温度计、雨量计、蒸发仪等)进行以降雨量为主的气象监测。
2)适用范围:一般情况下均要进行气象监测,进行地下水监测的崩塌体则必须进行。
(9)地震监测
1)监测内容:地震力是作用于崩塌体上的特殊荷载之一,对崩塌体的稳定性起着重要作用,应采用地震仪等仪器监测区内及外围发生的地震的强度、发震时间、震中位置和震源深度,分析区内的地震烈度,评价地震作用对崩塌体稳定性的影响。
2)适用范围:适用于所有的崩塌调查评价。根据我国地震监测的现状,不宜自行设站监测,应以收集地震资料为主。
(10)人类活动监测
应针对调查区内对崩塌有影响的项目,监测其范围、强度、速度等与崩塌变形的关系。
C. 地质灾害风险评价与管理技术方法
一、内容概述
(一)主要成果
在地质灾害详细调查的基础上,引进了国际上先进的风险管理理论,使地质灾害评价从易发性、危险性的评价延伸到风险评价,并结合国内实际,形成了相关的技术方法体系。主要包括:
1)结合黄土地区的实际情况,使用水文法进行了评价单元划分(图1),准确地获得了黄土斜坡的坡度、坡高、坡型、坡向等参数,分析了不同坡度、坡高、坡型、坡向发生滑坡的概率。
图1 使用水文法划分风险评价单元
2)设定了危险性及危害性的评分标准,综合危险性和危害性评定结果,设计了黄土滑坡灾害风险评分系统。
3)提出了基于水位控制的滑坡风险分析和控制方法。建立了地下水渗流场与斜坡应力场协同耦合模型,确定了不同库水位下的滑坡失稳概率(图2),评价了不同库水位下的人员生命风险和财产风险,统筹考虑容许风险和供水需求,确定了安全合理的水库蓄水水位,并提出搬迁避让、疏水排水和水位控制等综合风险控制措施。
4)选择典型地质灾害隐患作为分析对象,分别研究了不同破坏模式下的风险分析和叠加、容许风险的确定、社会风险的评价、位于斜坡体上部的承灾体的风险确定、作为名胜古迹的承灾体的价值估算等问题,建立了多风险源识别的滑坡风险分析流程和计算方法(图3)。
图2 不同库水位条件下滑坡体破坏概率
图3 基于多风险源的群体生命风险评价流程图
5)提出了基于GIS、DEM、RS、地面调查等技术方法相结合的黄土滑坡调查与风险编图的工作思路和技术路线(图4)。
图4 基于GIS、DEM、RS、地面调查等技术方法相结合的风险编图技术路线图
6)系统地研究了面向不同应用对象的地质灾害风险评价的比例尺类型和精度类型。提出了不同比例尺和不同精度下地质灾害调查与风险评价的内容、方法与技术要点(图5至图8),建立了一套针对不同比例尺、不同精度的地质灾害调查与风险评价技术方法体系。
(二)技术特点及指标
1.风险评价精度
地质灾害调查是进行地质灾害风险管理的基础,不同的应用对象其管理主体不同,对应的调查和评价的精度要求也不同。地质灾害调查与风险评估按比例尺可以划分为小比例尺、中比例尺、大比例尺和详细比例尺4种类型(表1)。地质灾害调查与风险评估的4种比例尺类型又可以分别采取高精度、中精度和低精度3种精度要求(表2)。
图5 延安市城区1∶5 万滑坡风险区划结果
图6 延安市大砭沟地区1∶2.5 万风险区划结果
图7 基于评分系统的1∶1 万风险区划结果
图8 延安市宝塔山滑坡1∶1000 风险区划结果
表1 地质灾害调查与评价类型
表2 地质灾害风险评估结果分级原则简表
2.风险评价技术要点
(1)小比例尺黄土滑坡风险评价(1∶5万)
小比例尺(1∶5万)滑坡评价适用于较大的区域面积,其中易发性的评价指标包括灾点密度、坡度、坡高、坡型、岩土类型、植被、降雨、工程活动等;从易发性到危险性需要增加的评价要素为在一定时间内发生滑坡的可能性(时间概率)、滑移距离、滑移速度;从危险性到风险需要增加的评价要素为受险对象类型、价值、易损性。
(2)中比例尺黄土滑坡风险评价(1∶2.5万)
对于面积在几十到上百平方千米之间的区域的滑坡风险评价,适用于1∶2.5万的中比例尺。先期通过高精度DEM和Quick Bird遥感数据等多信息源,识别潜在的滑坡易发坡体,并初步圈画滑坡的危险区界线和进行受险对象信息解译,再逐一通过野外核查对以上信息加以验证、修正或取消,最后形成符合比例尺精度要求的风险评价图。
表3 黄土滑坡灾害风险评价指标体系
(3)大比例尺黄土滑坡风险评价(1∶1万)
对于大比例尺的滑坡风险评价(1∶1万)可以用边坡风险分级系统进行评价。运用滑坡风险管理理论,确定黄土滑坡风险评价的总指标体系;基于野外调查的统计规律,分析黄土滑坡危险性的主要来源和影响危害性的主要因素,从失稳可能性评价指标、滑坡强度评价指标、受险对象评价指标和易损性评价指标4 个方面确定打分评价系统(表3)。
滑坡的风险一般用危险性×危害后果确定,如果分别得到了危险性评价结果和危害性评价结果,则风险大小利用两两比较矩阵即可确定。因此,评分系统的整体设计分为危险性评分表、危害性评分表和风险评价分级表三大部分(表4)。
表4 风险分级矩阵判定
注:VL级为很低级;L级为低级;M级为中级;H级为高级。
(4)单体黄土滑坡风险评价(>1∶5000)
单体的滑坡风险评价应达到定量的程度,一般在场址的工程地质勘查阶段进行。利用各种勘探数据分析斜坡的稳定性和失稳模式,并在此基础上分析斜坡破坏后所造成的财产损失风险、个体生命风险和群体生命风险。因此该阶段的风险评价要求有较高的精度,比例尺应该在1∶5000或更高。
3.风险评价需获取的参数和手段
评价需获取的参数应以能满足不同精度风险评价的需要为目的。除常规调查滑坡的形成条件、基本特征、影响因素、稳定性状况外,还应调查某体积规模滑坡的年发生频率、潜在滑坡的滑距和滑速、受险对象及经济价值、受险对象的时空概率和易损性等。上述参数因调查区面积不同、评价结果的用途不同,或调查阶段、调查经费的限制,其获取方法和结果在精度上是不同的。一般而言,低精度的调查适用于小比例尺,采用的方法也是一般性的收集资料、遥感解译、地面调查等;中精度的调查适用于中大比例尺,采用的方法主要有工程地质测绘、经验办法、走访知情者、简单模型、统计技术等;高精度的调查适用于单体滑坡,采用的方法主要有超大比例尺工程地质测绘、钻探、物探、山地工程、测试与试验、受险对象资产评估等。
二、应用范围及应用实例
在延安市宝塔区进行的地质灾害风险评价与管理,对于当地的地质灾害防治具有十分重要的现实意义,取得的主要成果在土地利用规划、地质灾害预警预报和科研活动中得到了广泛应用。
1)在土地利用规划方面,基于政府公众服务需求进行了滑坡调查和风险区划,形成了一套基于县域尺度的地质灾害调查和区划方法,建立了延安市宝塔区地质灾害风险管理示范基地,为政府土地利用规划、减灾防灾、科学管理地质灾害提供了技术方法和示范;合理指导土地开发者、投资商、居民等去认识风险、规避风险、合理进行经济活动决策等,取得了较好的经济效益和社会效益。
2)在地质灾害预警预报方面,基于风险区划结果,将县级地质灾害预警分为小比例尺、中比例尺、大比例尺、单体隐患点预警4种不同的预警精度,部分解决了预警区域过大的问题,对现有的地质灾害监测预警工作是一个推动,起到了应有的示范作用。
3)在科研影响力方面,基于地质灾害风险评价与管理发表了论文多篇,成果被多次引用,其中《地质灾害风险调查的方法与实践》被引频次达30次,同时在中国地质大学(北京)、长安大学等高校培养研究生多名,有力地推进了我国地质灾害风险评价与管理的发展。
我国地质灾害风险评价与管理还处于起步阶段,延安市宝塔区地质灾害风险评价与管理起到了应有的示范作用,应用前景广阔。
三、推广转化方式
1.宣传报道
编制了地质灾害科普宣传画及地质灾害科普宣传手册,向当地群众宣讲地质灾害防治知识及规避风险的方法(图9);就革命圣地延安市宝塔山滑坡风险接受了新华社记者的采访(图10),并提出了合理的风险规避及工程治理措施。
图9 科普宣传
图10 接受新华社记者采访
图11 会议交流
2.会议交流
在“城市建设与地质灾害防治学术论坛”等学术会议上向与会代表交流了地质灾害风险评价与管理技术方法及其在延安市宝塔区的应用(图11)。
3.人员培训
编写了《滑坡风险分析和风险管理培训班讲义》,并于2008年承办了“滑坡风险分析和风险管理培训班”,来自全国各地高校、科研院所和生产单位的113名代表参加了培训(图12);于2011年承办了“国际地质灾害高级研讨班”,来自全国各地的共215名代表参加了培训(图13)。
图12 滑坡风险分析和风险管理培训班
图13 国际地质灾害高级研讨班
技术依托单位:中国地质调查局西安地质调查中心
联系人:张茂省
通讯地址:陕西省西安市友谊东路438号
邮政编码:710054
联系电话:029-87821980
电子邮件:[email protected]
D. 地质灾害风险评估方法
滑坡泥石流等地质灾害的不确定性决定了其评估方法采用非确定性分析方法。该类方法是基于地质灾害预测理论的广义系统科学原理,在类比法的基础上发展起来的一类研究方法。随着概率论、数理统计及信息理论、模糊数学理论用于地质灾害预测,目前已形成了多种预测模型,其预测成果可相互对比、检验,从而可使预测成果更具合理性、科学性。目前常用的非确定性分析方法主要有以下几种。
一、参数合成法
参数合成法又称专家经验指数综合评判法。它是最为简单的定量评估方法。该类模型主要是建立在专家丰富的经验基础之上的,通过专家打分法等途径获取专家经验知识,专家选择影响地质灾害的因子并编制成图。根据专家的经验,赋予每个因子一个适当的权重,最后进行加权叠加或合成,形成地质灾害危险性分区图。
它的主要优点是:①可以同时考虑大量的参数;②可以应用于任意比例尺的区域和单体斜坡稳定性评估;③大大降低了隐含规则的使用,定量化程度提高;④整个流程可以在GIS的支持下快速完成,使数据管理标准化,时间短,费用少。主要缺点有:①主观性较强,不同的调查者或专家得出的结果无法进行比较。权值的确定仍含有不同程度的主观性;②隐含的评判规则使结果分析和更新困难;③需要详细的野外调查;④应用于大区域评估时,操作复杂,模型难以推广。
二、数理多元统计模型法
该方法是通过对现有地质灾害及其类似不稳定现象与地质环境条件和作用因素之间的统计规律研究,建立相关的预测模型,从而预测区域地质灾害的危险性。该类模型方法很多,如回归分析、判别分析、聚类分析方法等。
统计分析的前提是已知学习区(训练区)的地质灾害分布情况,根据数理统计理论,建立影响参数和地质灾害发生与否的数学统计模型,在测试区得到验证后,将其应用到地质环境相同或相似的地区,预测研究区的灾害危险性分布规律。因此,统计分析方法评估的结果的可靠度直接取决于测试区原始数据的精度,模型也不能在任何地区推广使用。尽管如此,大量的研究表明,统计分析是目前最为适用的区域地质灾害危险度评估区划方法,它有严格的数理统计理论作基础,数学模型简单易懂,而且与GIS技术能够很好地结合,使庞大的数据得到合理的标准化管理、分析与储存。
多元统计分析中的主成分分析和因子分析方法在环境统计方面有不少成功的应用。将这两种方法结合起来的主成分-因子分析法可以应用于多变量的因子赋权研究(吴聿明,1991)。主成分-因子分析法的主要思想是(应农根,刘幼慈,1987):在所研究的全部原始变量中将有关信息集中起来,通过探讨相关矩阵的内部依赖结构,将多变量综合成少数彼此互不相关的主成分,以再现原始变量之间的关系,并通过因子荷载矩阵的轴正交或斜交旋转,进一步探索产生这些相关联系的内在原因。
此方法适用于区域地质灾害空间预测研究,对一定地区土地利用、国土开发、城市规划具有宏观指导作用。
三、层次分析法
层次分析法是对一个包括多方面因子而又难以准确量化的复杂系统进行分析评估时,根据各因子之间以及它们与评估目标的相关性,理顺组合方式和层次,据此建立系统评估的结构模型和数学模型;对模型中的各种模糊性因子,根据它们的强度以及对影响对象的控制程度,确定标度指标和作用权重;将这些指标作为基本参数,代入评估模型,逐级进行定量分析并最终取得评估目标。根据地质灾害风险系统组成,大致可通过4个层次的统计分析完成评估工作:以各种要素为主体的基础层统计分析;以危险性、易损性、减灾能力为目的的过渡层分析;以期望损失为目标的准则层分析;以风险度或风险等级为最终目标的目标层分析。
四、模糊与灰色聚类方法
模糊聚类判别法模型以模糊数学理论为基础。由于地质灾害系统的复杂性,用绝对的“非此即彼”不能准确地描述地质灾害系统的客观实际,存在着“亦此亦彼”的模糊现象,不能用1或0二值逻辑来刻画,而需用区间[0,1]的多值(或连续值)逻辑来表达。而模糊数学理论正是适用于地质灾害系统的不确定性,用隶属函数来描述那些边界不清的过渡性问题及受多因素影响的复杂系统的非确定性问题。目前常用的方法有模糊综合评判法、模糊可靠度分析方法及其与层次性原理相结合而派生的模糊层次综合评判法。模糊聚类综合评估的基本步骤是:根据地质灾害风险构成,建立因素集、综合评估集和权重集,确定隶属函数,得到综合评估结果,并进行解释分析。
灰色聚类综合评估法以灰色系统理论为基础,常用于研究“小样本、贫信息不确定性”问题。在地质灾害预测中,可利用灰色关联分析,评估斜坡稳定性各影响因素的影响程度,可以克服通常数理统计方法作系统分析所导致的缺憾,对样本量和样本的规律性无特殊要求。同样可通过灰色聚类中的灰类白化权函数聚类,在考虑多种影响因素的基础上对各研究单元的危险性状态进行判定,进而完成空间预测中的危险性分区。灰色系统的以灰色模型(GM)为核心的各种预测模型还为分析地质灾害预测中的各种时序数据提供了有效途径,成为目前地质灾害实时跟踪预报的常用方法之一。灰色聚类综合评估的基本步骤是:确定聚类白化数和白化函数,标定聚类权,求聚类系数,构造类向量,求解聚类灰数。
五、信息模型评估法
该类模型的理论基础是信息论。用地质灾害发生过程中熵的减少来表征地质灾害事件产生的可能性,因素组合对某地质灾害事件的确定所带来的不肯定性程度的平均减少量等于该地质灾害系统熵值的变化。认为地质灾害的产生与预测过程中所获取的信息的数量和质量有关,是用信息量来衡量的,信息量越大,表明产生地质灾害的可能性越大。该类模型预测法同统计预测模型一样,适用于中小比例尺区域预测。
信息科学现已成为广泛使用的一门科学,但它的产生却只有短短的半个世纪历史。1948年Shannon 发表的着名论文《通信的数学理论》标志着信息科学的诞生。Shannon把信息定义为“随机事件不确定性的减少”,并把数学统计方法移植到了通信领域,提出了信息量的概念及信息熵的数学公式。信息科学研究的对象是信息,它的重要任务是研究信息的提取、信息传输、信息处理、信息存储等。由于现代自然科学发展的综合整体化趋势,各学科的相互渗透、相互联系,经过几十年的发展,使信息量和信息熵的概念已远远超出了通信领域。信息科学不仅应用于各种自然科学领域,而且已广泛应用在管理、社会等科学领域。
运用信息论方法进行地质学领域的矿床预测研究是由维索奥斯特罗斯卡娅(1968)及恰金(1969)先后提出。赵鹏大等在《矿床统计预测》一书中研究了信息量方法在区域找矿工作中的应用问题。晏同珍、殷坤龙等自1985年起,先后多次在陕南及长江三峡库区探索了信息量方法在区域性滑坡灾害空间预测分区中的应用,并与其他方法(如聚类分析、回归分析、数量化理论方法等)的研究成果进行了比较性研究。艾南山、苗天德(1987)研究了侵蚀流域地貌系统的信息熵问题,他们在斯揣勒的流域面积——高程曲线的基础上构造了侵蚀流域地貌系统的信息熵表达式,并据此作为流域稳定性的一种判定指标。Read J. 和Harr M.(1988)首次将信息熵的概念与斜坡安全系数计算的条分法结合在一起。由于地质灾害预测内容的多样性,所以决定了预测理论和方法的非单一性。晏同珍等(1989)将其概括为三类模型预测法——确定性模型预测法、统计模型预测法、信息模型预测法;前两种模型又可分别称其为“白箱”和“黑箱”模型,而信息模型则是介于两者之间。
地质灾害现象(Y)受多种因素Xi的影响,各种因素所起作用的大小、性质是不相同的。在各种不同的地质环境中,对于地质灾害而言,总会存在一种“最佳因素组合”。因此,对于区域地质灾害预测要综合研究“最佳因素组合”,而不是停留在单个因素上。信息预测的观点认为,地质灾害产生与否是与预测过程中所获取的信息的数量和质量有关,因此可用信息量来衡量:
地质灾害风险评估理论与实践
根据条件概率运算,上式可进一步写成:
地质灾害风险评估理论与实践
式中:I(y,x1x2xn)为因素组合x1x2xn对地质灾害所提供的信息量(bit);P(y,x1x2xn)为因素x1x2xn组合条件下地质灾害发生的概率;Ix1(y,x2)为因素x1存在时,因素x2对地质灾害提供的信息量(bit);P(y)为地质灾害发生的概率。
式(2)说明,因素组合x1x2xn对地质灾害所提供的信息量等于因素x1提供的信息量,加上因素x1确定后因素x2对地质灾害提供的信息量,直至因素x1x2xn-1确定后,xn对地质灾害提供的信息量,反映出信息的可加性特征,从而说明区域地质灾害信息预测是充分考虑因素组合的共同影响与作用。
P(y,x1x2xn)和P(y)可用统计概率来表示,各种因素组合对预测地质灾害提供的信息量可正可负,当P(y,x1x2xn)>;P(y)时,I(y,x1x2xn)>;0;反之I(y,x1x2xn)<;0。大于0情况表示因素组合x1x2xn有利于所预测地质灾害的发生,相反情况则表明这些因素组合不利于地质灾害的发生。
区域地质灾害预测是在对研究区域网格单元划分的基础上进行的,根据不同地区具体的地质、地形条件,采用相应的网格形状和网格大小,进一步结合区域地质灾害分布图开展信息统计分析。假定某区域内共划分成N个单元,已经发生地质灾害的单元为N0个。具相同因素x1x2xn组合的单元共M个,而在这些单元中有地质灾害的单元数为M0个。按照统计概率代表先验概率的原理,式(1),因素x1x2xn在该地区内对地质灾害提供的信息量为:
地质灾害风险评估理论与实践
如果采用面积比来计算信息量值,则式(3)可表示成:
地质灾害风险评估理论与实践
式中:A为区域内单元总面积;A0为已经发生地质灾害的单元面积之和;S为具相同因素x1x2xn组合的单元总面积;S0为具相同因素x1x2xn组合单元中发生地质灾害的单元面积之和。
一般情况下,由于作用于地质灾害的因素很多,相应的因素组合状态也特别多,样本统计数量往往受到限制,故采用简化的单因素信息量模型的分步计算,再综合叠加分析相应的信息量模型改写为:
地质灾害风险评估理论与实践
式中:I为预测区某单元信息量预测值;Si为因素xi所占单元总面积;S0i为因素xi单元中发生地质灾害的单元面积之和。
六、实证权重法
实证权重法(Weights of evidence,)是加拿大数学地质学家Agterberg等(1989)提出的一种基于二值(存在或不存在)图像的地学统计方法,是在假设条件独立的前提下,基于贝叶斯定理(Bayesian’rule)的一种定量预测方法。Bonham-Carter等(1990)和Harris等(2001)都先后应用WOE方法来预测矿产的远景分布。通过对已知成矿情况网格单元的预测因子和响应因子之间的统计分析,计算出权重,然后对各待预测网格单元的各预测因子进行加权综合,最后,通过确定每一单元响应因子出现的概率大小便可得到不同级别的成矿远景区。
Van Westen进一步将模型应用到灾害危险性评估领域。数据驱动权重模拟方法的主要原理是利用滑坡历史分布数据,建立滑坡分布与各影响因子之间的统计关系,即根据在各影响因子不同类别中滑坡分布的统计情况来确定各影响因子对滑坡灾害的贡献率(权重)大小。这种采用数据进行权重确定的方法被称为数据驱动模型。与专家知识模型相比,权重的确定更加科学和可靠,避免了专家的主观性所带来的不确定性。最后,利用另一时期的滑坡分布历史数据对评估结果进行检验和成功率预测,调整不合理的边界,使评估结果更加具有可信度。基于统计学的Bayesian方法的数据驱动权重模型所采用的统计方法更加严谨,充分考虑了滑坡影响因素之间的关系,以及各影响因素与滑坡灾害的关系;并进行影响因素的独立性分析,找出最关键的影响因子。在此基础上计算各影响因素的权重。
七、非线性模型预测法
非线性模型预测法又称BP神经网络法,是把一组样本的输入输出问题变为一个非线性优化问题而建立的预测模型。
鉴于地质灾害系统具有复杂性特点,很难用简单的线性方程表达,因此使一批非线性预测模型迅速发展起来。如分形理论就是通过研究地质灾害系统的自相似性来对地质灾害的运动规律进行研究。易顺民应用分形理论研究了区域性滑坡灾害活动的自相似结构特征,发现在地质灾害活动的高潮期到来前有明显的降维。吴中如、黄国明等依据分形理论提出了滑坡变形失稳判据及滑坡蠕滑的相空间模型,是地质灾害时间预报的一种全新思路。自组织理论探索地质灾害复杂系统如何从无序进化到有序的自组织过程;突变理论主要从定量的角度描述非线性系统在临界失稳时的突变行为,为地质灾害时间预报提供了一种新途径;分形理论则从几何的角度探讨系统内各个层次间的自相似性,应用在地质灾害过程描述及过程预报中,化复杂为简单,化定性为定量;混沌动力学探讨非线性地质灾害系统在其演化过程中的不可逆性和演化行为对初值的敏感性。
人工神经网络(Artificial Neural Network,简称ANN)是由大量与自然神经细胞类似的人工神经元广泛互连而成的网络。网络的信息处理由神经元之间的相互作用来实现,知识与信息的存贮表现为网络元件互连间分布式的物理联系,网络的学习和识别决定于各神经元连接权系的动态演化过程。人工神经网络是一个超大规模非线性连续时间自适应信息处理系统。目前人工神经网络的应用已渗透到许多领域,为学习识别和计算提供了新的现代途径。
人工神经网络使用比较方便,它的信息处理过程同人脑一样,是一个黑箱,如图1-6所示。在实际应用中,和人们打交道的只是它表层的输入和输出,而内部信息处理过程是看不到的。对于不懂神经网络内部原理的人,也可将自己的问题交给这种网络进行解决,只要把你的例子让它学习一段时间,它就可以解决与之有关的问题。这正符合地质灾害预测理论的基本原理和思路。
图1-6 神经网络信息处理示意图
根据人工神经网络对生物神经系统的不同组织层次和抽象层次的模拟,人工神经网络可以分为多种类型。目前已有40余种人工神经网络模型。引用于地质灾害预测评估的多层前馈神经网络模型(Back Propagation,简称BP模型)是目前应用最广泛、发展最成熟的一种神经网络模型,如图1-7所示,它是按层次结构构造的,包括一个输入层、一个输出层和一个或多个隐含层。
图1-7 BP网络模型
实际上,BP模型是把一组样本的输入输出问题变为一个非线性优化问题。我们可以把这种模型看成一个从输入到输出的映射,这个映射是高度非线性的。如果输入节点数为n,输出节点数为m,则神经网络表示的是从n维欧氏空间到m维欧氏空间的映射。
在预测识别过程中,标准样本的选择是否得当,是预测是否成功的关键。一般来说,学习样本最好能涵盖预测对象的所有状态,具有广泛的代表性。在确定网络结构时,一般来讲,一个隐层的三层BP模型已可进行任意精度模拟任何连续函数。隐含层结点数目过少,不能有效地映射输入层和输出层之间的关系;过多,收敛速度过慢。因此,中间层结点数目的选取,需经过反复演算训练,才能得出较为理想的节点数。在计算过程中,为了提高效率,可以适当降低输入结点的数目,减少训练样本的维数,以增加网络的稳定性,同时还可以通过增加冲量项法或者自适应调节学习率、共轭梯度法等方法提高迭代收敛速度。
BP模型运用到地质灾害危险性区划中,可以通过样本区的标准样本的学习建立相应预测网络,从而推广到预测区进行预测。网络的输入层的变量对应于影响地质灾害产生的主要影响因素,变量可以是二态变量,也可以是具体的观测数据。当然由于各变量存在单位或数量级的差异,必须把变量数据经过正规化或标准化处理。输出层对应的是地质灾害预测等级(极高、高、中等、低、极低)的划分,或是危险程度的具体数值表达,如稳定性系数、破坏概率等,这就要求样本区的研究精度较高,指标细化程度较高。
八、地质灾害风险分析与GIS技术
地理信息系统(GIS)是集计算机科学、信息科学、现代地理学、遥感测绘学、环境科学、城市科学、空间科学、管理科学和现代通讯技术于一体的一门新兴学科。具体而言,GIS是指对各种地理信息及其载体(文字、数据、图表、专题图等)进行输入、存储、检索、修改、量测、运算、分析、输出等的技术系统。GIS的主要功能有采集、存储、管理、分析、输出各种数据、数据维护和更新、区域空间分析以及多因素综合分析和动态监测等。GIS不仅可以像传统的数据库管理系统(DBMS)那样管理数字和文字(属性)信息,而且还可以管理空间(图形)信息;它可以使用各种空间分析的方法,对多种不同的信息进行综合分析,寻找空间实体间的相互关系,分析和处理一定区域内分布的现象和过程。当代地理信息系统正向能够提供丰富、全面的空间分析功能的智能化GIS的方向发展。智能化的GIS具有强大的空间建模功能,能够构建各种具有专业性、综合性、集成性的地学分析模型来完成具体的实际工作,解决以前只有靠地学专家才能解决的问题。
GIS把各种与空间信息相关的技术与学科有机地融合在一起,并与不同数据源的空间与非空间数据相结合,通过空间操作与模型分析,提供对规划、管理、决策有用的信息产品。GIS为我们提供了一种认识和理解地学信息的新方式,GIS强大的空间分析功能和空间数据库管理能力为我们研究区域地质灾害提供了一个科学、便捷的崭新途径。
作为数字地球的核心技术之一,GIS经过将近40年的发展,已经成为一种日益成熟的空间数据处理技术和方法。它提供了一种认识和理解地学信息的新方式,已广泛应用于国土资源调查、环境质量评估、区域规划设计、公共设施管理等方面。在地质灾害研究领域,GIS技术的应用已从最初的数据管理、多源数据采集数字化输入和绘图输出,到数字高程模型、数字地面模型的使用、GIS 结合灾害评估模型的扩展分析、GIS与决策支持系统的集成、GIS虚拟现实技术的应用等,并逐步发展与深入应用。
各种地质灾害都是在地球表层一定空间范围和一定时间限度内发生的,尽管不同种类的地质灾害之间、同一种类的地质灾害的不同个体之间大都形态各异,形成机理也是千差万别,但它们都是灾害孕育环境与触发因子共同作用的结果,而这些都与空间信息密切相关,利用GIS技术不仅可以对各种地质灾害及其相关信息进行管理,而且可以从不同空间和时间的尺度上分析地质灾害的发生与环境因素之间的统计关系,评估各种地质灾害的发生概率和可能的灾害后果。地质灾害危险性区划图属于一种综合图件,而且具有一定时段内的静态特点,因此需要不断更新;尤其是有新的地质灾害发生的时候,更应及时修订。由于GIS技术的空间分析、制图功能和可视化的特点,所以GIS技术在地质灾害区划研究方面正得到快速发展,以GIS软件为技术平台的地质灾害的危险性、易损性和风险评估的系统研究逐步成为本领域研究的发展方向,并有可能在不远的未来与网络技术相结合。
国外尤其是发达国家,对GIS技术应用于地质灾害领域的研究已做了很多工作。从20世纪80年代至今,GIS技术的应用已从数据管理、多源数据采集、数据化输入和绘图输出,到数字高程模型、数字地面模型的使用、GIS结合灾害评估模型的扩展分析、GIS与决策支持系统(DSS)的集成、GIS虚拟现实技术的使用,都得到不断的发展和广泛的应用。在滑坡灾害研究领域,GIS技术的应用已经比较成熟,主要体现在以下几个方面:
(1)建立基于GIS的滑坡灾害信息管理系统。如Keane James M.(1992), BaharIrwan(1998), Bliss Norman B.(1998)等将GIS运用到滑坡灾害历史数据的管理及预测成果成图表征中。
(2)GIS技术与各种评估模型结合运用到滑坡危险性预测中。如Matula(1987),Lekkas E.(1995), Randall(1998), Dhakal Amod Sagar(1999)等利用GIS的空间分析功能与预测模型的结合,完成了滑坡预测因素的空间叠加,进行滑坡危险性预测,得出相应的预测分区图和滑坡敏感性图。
(3)进行基于GIS的滑坡灾害风险分析预测与管理。如 Ellene(1994),Leroi(1996),Bunza(1996), Castaneda Oscar E.(1998), Atkinson(1998), Michael(2000), Aleotti(2000)等从影响滑坡灾害风险的因素出发,利用GIS的空间分析功能进行因素叠加,实现风险评估并结合GIS的信息管理功能,对灾害信息进行管理,最终进行管理决策,大到防灾减灾的目的。目前,国外在滑坡灾害预测领域已基本实现了RS与GIS的紧密结合,个别项目已达到了3S技术的结合。
国内基于GIS技术开展地质灾害评估工作起步较晚,目前还没有成熟实用的地质灾害预测评估的GIS系统。姜云、王兰生(1994)在山区城市地面岩体稳定性管理与控制中应用了GIS技术,以重庆市为典型研究对象,对地面岩体变形破坏进行了时空预测预报;同时,通过分析城市地质环境对土地工程利用的制约关系,应用GIS的信息存储、查询、空间叠加运算及DEM模型等功能,做出地力等级划分,并编制了斜坡稳定性综合评估分区图。雷明堂、蒋小珍等(1994)将GIS技术运用在岩溶塌陷评估中,完成了研究区岩溶塌陷危险度评估及分区。成都理工学院(1998)和中国地质环境监测院及国土资源部长江三峡地质灾害防治指挥部合作进行了“地质灾害信息系统及防治决策支持系统”开发试验工作,初步建立了一个全国地质灾害调查与综合评估系统。中国国土资源经济研究院、中国地质大学、中国地质科学院岩溶地质研究所、国土资源部实物地质资料中心(2002)联合开展了“全国地质灾害风险区划”项目攻关,利用国产软件MAPGIS,对全国小比例尺滑坡、泥石流、岩溶塌陷地质灾害进行了基于GIS的风险评估(包括地质灾害危险性评估、易损性评估和风险性区划)。朱良峰等在国产版权的MAPGIS软件平台上,开发了一套地质灾害风险评估系统RISKANLY。这套基于GIS技术的地质灾害风险分析不仅方法上可行,而且技术上先进,代表着地质灾害风险分析的发展方向。当然,无论是地质灾害的危险性分析模型,还是区域社会经济易损性分析模型,都有待于实践中的进一步研究与发展,这显然是应该随着人类对地质灾害本质属性认识的逐渐深化而不断发展的。
随着我国社会经济的迅速发展和城市化进程的加快,崩塌、滑坡、泥石流、地面塌陷等地质灾害破坏的广度与深度也在迅速增大,需要更加关注地质灾害的区域时空预测研究。与地质灾害有关的相关因素很多且成因复杂,都与空间信息密切相关,因此,利用GIS技术不仅可以对地质灾害相关的各种空间信息进行管理,而且可以从不同的空间和时间尺度上分析地质灾害的发生与环境因素之间的统计关系,评估地质灾害的发生风险和可能的灾害范围。因此,基于GIS的地质灾害风险评估与区划将会在未来我国的社会经济发展中起着重要的作用。
九、小结
地质灾害风险评估涉及两个重要的方面:一是地质灾害发生的可能性问题,二是人类自身、社会及环境等对象对地质灾害的抵御能力问题。因此,地质灾害的定义采用国际上的geological hazard一词。本书遵循科学性、通用性的原则,结合国内近年来在地质灾害风险评估领域已初步形成的有代表性的术语表达方式,在联合国教科文组织提出的统一定义的基础上,对地质灾害风险评估所涉及的基本术语定义如下:
(1)危险度H(Hazard)。特定地区范围内某种潜在的地质灾害现象在一定时期内发生的概率。
(2)易损性V(Vulnerability)。某种地质灾害现象以一定的强度发生而对承灾体可能造成的损失程度,易损性可以用0-1来表示,0表示无损失,1表示完全损失。
(3)承灾体E(Element at risk)。特定区域内受地质灾害威胁的各种对象,包括人口、财产、经济活动、公共设施、土地、资源、环境等。
(4)风险度R(Risk)。承灾体可能受到各种地质灾害现象袭击而造成的直接和间接经济损失、人员伤亡、环境破坏等。风险等于危险性、易损性、承灾体价值三者的乘积。
风险度(R)=危险度(H)×易损度(V)×承灾体价值(E)
E. 地质灾害调查评价技术方法
一、内容概述
1.主要成果
通过1∶5万比例尺地质灾害详细调查工作,总结形成了一套滑坡、崩塌、泥石流地质灾害调查工作流程和技术方法体系。取得的主要成果包括:
1)总结及完善了地质灾害调查评价的技术路线,形成了一套野外和室内工作方法。针对黄土高原地区地质环境、地质灾害发育特征和分布规律,形成了一套从资料收集→遥感解译→野外核查→再次解译→野外调查→主要地质灾害点测绘→重大地质灾害点勘查的工作流程和各个环节的实施细则;室内工作形成了基于GIS的数据采集→空间属性数据库建立→评价指标体系选择→危险程度模型分析→地质灾害危险程度评价与区划的技术方法和工作流程。
2)研究了西北黄土高原区地质灾害发育规律及变形破坏模式。其滑坡平面形态典型、剪出口高,基本力学模式简单;崩塌规模小、危害大、变形模式多样(图1);不稳定斜坡坡度跨度大、坡型以直线型为主,潜在危害严重。
图1 黄土高原区崩塌破坏模式
3)研究了黄土滑坡的主控因素和诱发因素,认为沟谷发育期、坡体地质结构、坡体形态等对滑坡的形成、分布、规模和类型具有明显的控制作用,地下水和植被对滑坡形成具有一定的影响,人类工程活动和降水的双重作用是滑坡灾害最主要的引发因素(图2—图4)。
图2 宝塔区杜甫川沟谷发育分区
图3 降雨量与地质灾害发生频次关系
4)根据黄土地区斜坡特点,计算了工作区不同坡度区间、不同坡高区间、不同斜坡类型及不同坡向区间发生滑坡的概率(图5—图7),建立了基于坡度、坡高、坡型、坡向等参数的黄土滑坡区域危险性评价指标体系。
5)形成了定性与定量相结合的地质灾害易发程度及危险程度区划技术方法(图8—图10)。
6)规范和统一了西北黄土高原区地质灾害图的编制方法和图式图例,建立了基于MapGIS的地质灾害编图的图库字库,形成了一套地质灾害调查评价编图技术方法(图11)。
图4 人类活动改变斜坡原始坡度状态
图5 不同坡度区间发生滑坡的比例
图6 不同坡高区间发生滑坡的比例
图7 不同坡向区间发生滑坡的比例
图8 地质灾害点密度分布
图9 地质灾害易发性区划
图10 地质灾害危险性区划
7)采用高精度遥感影像图对调查区进行了地质灾害和地质环境解译,建立了地质灾害遥感解译标志和数据档案(图12)。
8)对陕西省特大型滑坡进行了专项调查及评价,研究了特大型滑坡的时空分布规律、发育特征、形成机理及风险级别(图13),形成了一套针对特大型滑坡调查与评价的技术方法。
9)开展了汶川地震灾区、玉树地震灾区、安康特大暴雨及灞桥滑坡等地质灾害应急调查,形成一套快速反应、高效的地质灾害应急排查技术方法。
图11 滑坡分布图编制的基本构成及层次
图12 基于ArcGIS的遥感解译平台
图13 不同风险级别特大型滑坡数量
图14 地质灾害信息系统
10)建立了基于ArcGIS的数据库及地质灾害信息系统(图14)。
2.技术特点
地质灾害调查评价技术路线见图15,其技术特点包含以下6个方面:
1)以已发生滑坡、崩塌、泥石流、潜在地质灾害隐患点及其形成的地质条件调查为核心,以遥感解译和野外核查为主要手段,对已发生的滑坡、崩塌、泥石流进行调查,开展滑坡、崩塌、泥石流易发程度区划;在遥感解译的基础上,以野外实地调查为主要手段,对潜在的滑坡、崩塌、泥石流等地质灾害隐患点进行排查,并逐一对其危险程度和危害性进行评价。
2)以遥感调查为先导,并将遥感调查贯穿于详细调查工作的全过程。在遥感解译基础上,初步判断滑坡、崩塌、泥石流等的危险性,确定需要进一步核查和调查的已有地质灾害点,以及需要排查的基本具备成灾条件的地质灾害隐患地段或区域,划分重点调查区和一般调查区,指导野外调查;并将遥感解译—野外核查—再解译贯穿于调查工作的全过程。
3)调查区采用重点调查区与一般调查区相结合的方法。根据地质环境条件和地质灾害发育程度,将调查区划分为重点调查区与一般调查区,按照1∶1万比例尺草测、1∶5万比例尺正测、1∶5万比例尺简测3种主要的不同精度展开调查。
图15 地质灾害调查评价技术路线框架图
4)灾害点按野外核查、地面调查、测绘和勘查4个层次开展。对于未成灾或没有威胁对象,且规模小、发育特征不典型的滑坡、崩塌、泥石流自然地质现象,采用野外核查为主的方法;对于已成灾的已有地质灾害点或具有威胁对象的地质灾害隐患点,逐一进行现场调查;对于危险程度较大的地质灾害,进行大比例尺工程地质测绘;调查中发现的重大地质灾害隐患点,当地面调查和测绘工作仍不能解决问题时,对其实施控制性勘查。
5)采用点、线、面相结合,重视环境地质条件调查,以专业调查为主的方法:①地质灾害点调查,即对已有地质灾害点逐一进行现场调查;②沿线追踪调查,即沿着主干河流及其支流低地、交通线路及输油管线进行地质环境条件、滑坡、崩塌以及地质灾害隐患点追踪调查;③面上控制调查,即在地质灾害点较少地段,采用网格控制调查。
6)紧密与各级政府国土部门相结合,采用政府部门和当地群众共同参与的调查方法。一是充分了解地方政府部门对于地质灾害防治工作的需要,并将其需要贯穿于调查工作中,提高调查成果的实用性;二是在地方政府部门配合调查时,调查组实时将地质灾害隐患点移交给政府部门,政府部门及时实施避让、监测等防治措施;三是专业调查与群测群防相结合,提高群众地质灾害防治意识,完善群专结合的监测网络。
二、应用范围及应用实例
1.成果应用的范围及效果
西北黄土高原区地质灾害详细调查成果可作为减灾防灾和国民经济发展规划以及科学研究等的基础地质依据,对地质灾害防治具有重要的现实意义。
1)总结形成了一套滑坡、崩塌、泥石流地质灾害详细调查工作流程和技术方法体系,建立了延安市宝塔区地质灾害详细调查示范,为随后开展的地质灾害详细调查项目提供了技术示范。
2)揭示了调查区地质灾害发育的地质环境背景、地质灾害类型、发育特征与分布规律及形成机理,并以此为基础提出了防治对策。
3)完善了群测群防网络,建立了重要地质灾害隐患点防灾预案,为地方政府汛期地质灾害防治及编制防治规划提供了基础地质依据,被调查区内工程建设选址、地质灾害危险性评估等广泛应用。
4)编制的《编图指南》和示范图件为地质灾害编图提供了支撑,随后开展的地质灾害详细调查项目都以此为技术范例。
5)编写了国土资源部行业规范,即《滑坡崩塌泥石流灾害调查规范》。
6)为地质灾害监测预警及风险管理提供了基础数据。
7)开展了汶川地震灾区(图16)、玉树地震灾区(图17)、安康特大暴雨、榆林子洲滑坡、西安灞桥滑坡(图18)等地质灾害应急调查。同时开展了延安市和榆林市地质灾害汛期排查,向当地政府提出了应急处置建议。
8)基于地质灾害调查与评价发表了多篇论文,成果被多次引用,其中《延安市宝塔区崩滑地质灾害发育特征与分布规律初探》被引频次23次,《遥感技术在黄土高原区地质灾害详细调查中的应用》被引频次18次;同时通过中国地质大学(北京)、长安大学等高校研究生联合培养基地培养研究生多名。
图16 汶川地震灾区应急调查
图17 玉树地震灾区应急调查
图18 西安灞桥滑坡应急调查
9)此项地质灾害调查评价工作已纳入《国务院关于加强地质灾害防治工作的决定》,掀起了全国地质灾害调查评价工作高潮,推动了我国地质灾害调查评价工作进展。
2.应用前景
近年来,全国各地开展的地质灾害详细调查工作都以延安市宝塔区地质灾害详细调查为示范,起到了应有的示范作用,在地质灾害调查及防治工作中应用前景广阔。
三、推广转化方式
1.宣传报道
举办了“地质灾害防治知识万村培训”,向当地群众宣讲地质灾害防治知识(图19);提出的地质灾害应急调查处置建议在中央电视台新闻频道进行了报道(图20);同时在国土资源部网站、中国地质调查局网站及西安地质调查中心网站也多次就地质灾害调查评价技术方法进行了报道。
图19 地质灾害防治知识万村培训
图20 中央电视台报道
2.会议交流
1)举办了中国-挪威地质灾害研讨会,启动了“灌溉渗透诱发型黄土崩滑灾害机理研究”中挪国际合作研究项目。
2)承办了“第十届国际滑坡与工程边坡会议”、“2011年全国工程地质学术年会”、“国际首届地质灾害研究及管理新技术研讨会”等多次学术会议,并就“地质灾害调查评价技术方法”向与会代表进行了交流。
3.人员培训
项目负责人张茂省研究员分别在3 期全国性地质灾害详细调查培训班以及陕西、甘肃、青海、山西、河南、海南、吉林等省地质灾害详细调查培训班上授课,对地质灾害详细调查方法进行培训,并赴实地进行地质灾害调查技术指导,累计培训人员超过1000人次(图21)。
图21 张茂省研究员在为学员授课
技术依托单位:中国地质调查局西安地质调查中心
联系人:张茂省
通讯地址:陕西省西安市友谊东路438号
邮政编码:710054
联系电话:029-87821980
电子邮件:[email protected]