⑴ 失效分析的系统方法
失效分析的系统方法:在设计生产使用各环节都有可能出现失效,失效分析伴随产品全流程。
一、C-SAM(超声波扫描显微镜),属于无损检查:
检测内容包含:
1.材料内部的晶格结构、杂质颗粒、夹杂物、沉淀物
2.内部裂纹
3.分层缺陷
4.空洞、气泡、空隙等。
二、 X-Ray(X光检测),属于无损检查:
X-Ray是利用阴极射线管产生高能量电子与金属靶撞击,在撞击过程中,因电子突然减速,其损失的动能会以X-Ray形式放出。而对于样品无法以外观方式观测的位置,利用X-Ray穿透不同密度物质后其光强度的变化,产生的对比效果可形成影像,即可显示出待测物的内部结构,进而可在不破坏待测物的情况下观察待测物内部有问题的区域。
检测内容包含:
1.观测DIP、SOP、QFP、QFN、BGA、Flipchip等不同封装的半导体、电阻、电容等电子元器件以及小型PCB印刷电路板
2.观测器件内部芯片大小、数量、叠die、绑线情况
3.观测芯片crack、点胶不均、断线、搭线、内部气泡等封装缺陷,以及焊锡球冷焊、虚焊等焊接缺陷
三、SEM扫描电镜/EDX能量弥散X光仪(材料结构分析/缺陷观察,元素组成常规微区分析,精确测量元器件尺寸),
SEM/EDX(形貌观测、成分分析)扫描电镜(SEM)可直接利用样品表面材料的物质性能进行微观成像。EDX是借助于分析试样发出的元素特征X射线波长和强度实现的,根据不同元素特征X射线波长的不同来测定试样所含的元素。通过对比不同元素谱线的强度可以测定试样中元素的含量。通常EDX结合电子显微镜(SEM)使用,可以对样品进行微区成分分析。
检测内容包含:
1.材料表面形貌分析,微区形貌观察
2.材料形状、大小、表面、断面、粒径分布分析
3.薄膜样品表面形貌观察、薄膜粗糙度及膜厚分析
4.纳米尺寸量测及标示
5.微区成分定性及定量分析
四、EMMI微光显微镜。对于故障分析而言,微光显微镜(Emission Microscope, EMMI)是一种相当有用且效率极高的分析工具。主要侦测IC内部所放出光子。在IC元件中,EHP(Electron Hole Pairs)Recombination会放出光子(Photon)。如在P-N结加偏压,此时N阱的电子很容易扩散到P阱,而P的空穴也容易扩散至N,然后与P端的空穴(或N端的电子)做EHP Recombination。
⑵ 材料疲劳失效分析的实验方法有哪些
6.疲劳实验方法及疲劳曲线:
原理:用小试样模拟实际机件的应力情况,在疲劳试 验机上系统测量材料的疲劳曲线,从而建立疲劳极 限和疲劳应力判据。
试验设备:最常用的旋转弯曲疲劳试验机 将相同尺寸的疲劳试样,从0.67σ 范围内选择几个不同的最大循环应力σ 别对每个试样进行循环加载试验,测定它们从加载开始到试样断裂所经历的应力循环次数N ,然后将试验数据绘制成σmax -N曲线或 max-lgN曲线,即疲劳曲线。
二、疲劳试样 适用于旋转弯曲疲劳试验机上的光滑试样其尺寸形状如图所示,其直径d可为6mm、7.5mm、 9.5mm。
三、试验程序 将试样装入试验机,牢固夹紧并使其与试验机主轴保持良好同轴。 旋转时,试样自由端上测得的径向跳动量应不大于0.03mm。空载运转,在主轴筒加力部位测得 径向跳动量不应大于0.06mm。加力前必须检定 上述值。装样时切忌接触试验部分表面。 试验速度范围900~10000r/min。同一批试验的试验速度应相同。不得采用引起试样共振的试验 速度。
三、试验程序 试验一直进行到试样失效或达到规定循环次数时终止,试验原则上不得中断。 试样失效标准为肉眼所见疲劳裂纹或完全断裂。试样失效如发生在最大应力部位之外,或断口有 明显缺陷或中途停试发生异常数据,则试验结果 无效。
四、测定条件疲劳极限 应力增量一般为预计条件疲劳极限σ-1 的3%~5%。 试验应在3~5级的应力水平下进行,第一根试样的应力水平应略高于预计的条件疲劳极限。根据上根 试样的试验结果是破坏还是通过,即试样在未达到 指定寿命10 周次之前破坏或通过,决定下一根试样的应力降低或升高,直到完成全部试验。
⑶ 失效分析的步骤有哪些
一、事故调查
1.现场调查
2.失效件的收集
3.走访当事人和目击者
二、资料搜集
1.设计资料:机械设计资料,零件图
2.材料资料:原材料检测记录
3.工艺资料:加工工艺流程卡、装配图
4.使用资料:维修记录,使用记录等
三、失效分析工作流程
1.失效机械的结构分析
失效件与相关件的相互关系,载荷形式、受力方向的初步确定
2.失效件的粗视分析
用眼睛或者放大镜观察失效零件,粗略判断失效类型(性质)。
3.失效件的微观分析
用金相显微镜、电子显微镜观察失效零件的微观形貌,分析失效类型(性质)和原因。
4.失效件材料的成分分析
用光谱仪、能谱仪等现代分析仪器,测定失效件材料的化学成分。
5.失效件材料的力学性能检测
用拉伸试验机、弯曲试验机、冲击试验机、硬度试验机等测定材料的抗拉强度、弯曲强度、冲击韧度、硬度等力学性能。
6.应力测试、测定:用x光应力测定仪测定应力
用x光应力测定仪测定应力
7.失效件材料的组成相分析
用x光结构分析仪分析失效件材料的组成相。
8.模拟试验(必要时)
在同样工况下进行试验,或者在模拟工况下进行试验。
四、分析结果提交
1.提出失效性质、失效原因
2.提出预防措施(建议)
3.提交失效分析报告
⑷ 失效分析的步骤有哪些
失效分析方法与步骤
1.背景资料的收集和分析样品的选择
2.失效零件的初步检查(肉眼检查及记录)
3.无损检测
4.机械性能检测
5.所有试样的选择、鉴定、保存以及清洗
6.宏观检验和分析(断裂表面、二次裂纹以及其他的表面现象)
7.微观检验和分析
8.金相剖面的选择和准备
9.金相剖面的检验和分析
10.失效机理的判定
11.化学分析(大面积、局部、表面腐蚀产物、沉积物或涂层以及微量样品的分析)
12.断裂机理的分析
13.模拟试验(特殊试验)
14.分析全部事实,提出结论,书写报告(包括建议在内)
以上是失效分析的全部过程,当然具体到某个失效零件,不一定都要这些过程,要根据失效零件的复杂程度,具体分析。问一下英格尔检测公司这样的第三方检测机构怎么做
⑸ 电子元器件失效分析方法知多少
典型电子元器件失效分析方法
1、微分析法
(1)肉眼观察是微分析技术的第一步,对电子元器件进行形貌观察线系及其定位失准等,必要时还可以借助仪器,例如:扫描电镜和透射电子显微镜等进行观察;
(2)其次,我们需要了解电子元器件制作所用的材料、成分的深度分布等信息。而AES、SIMS和XPS仪器都能帮助我们更好的了解以上信息。不过,在作AES测试时,电子束的焦斑要小,才能得到更高的横向分辨率;
(3)最后,了解电子元器件衬底的晶体取向,探测薄膜是单晶还是多晶等对其结构进行分析是一个很重要的方面,这些信息主要由XRD结构探测仪来获取。
2、光学显微镜分析法
进行光辐射显微分析技术的仪器主要有立体显微镜和金相显微镜。将其两者的技术特点结合使用,便可观测到器件的外观、以及失效部位的表面形状、结构、组织、尺寸等。亦可用来检测芯片击穿和烧毁的现象。此外我们还可以借助具有可提供明场、暗场、微干涉相衬和偏振等观察手段的显微镜辅助装置,
以适应各种电子元器件失效分析的需要。
3、红外显微分析法
与金相显微镜的结构相似,不同的是红外显微镜是利用近红外光源,并采用红外变像管成像,利用此工作原理不用对芯片进行剖切也能观察到芯片内部的缺陷及焊接情况。 红外显微分析法是针对微小面积的电子元器件,在对不影响器件电学特性和工作情况下,利用红外显微技术进行高精度非接触测温方法,对电子元器件失效分析都具有重要的意义。
4、声学显微镜分析法
电子元器件主要是由金属、陶瓷和塑料等材料制成的,因此声学显微镜分析法就是基于超声波可在以上这些均质传播的特点,进行电子元器件失效分析。此外,声学显微镜分析法最大的特点就是,能观察到光学显微镜无法看到的电子元器件内部情况并且能提供高衬度的检测图像。
以上是几种比较常见的典型电子元器件失效分析方法,电子元器件失效直都是历久弥新的话题,而对电子元器件失效分析是确定其失效模式和失效机理的有效途径之一,对电子元器件的发展具有重要的意义。
⑹ 失效分析是什么
失效分析是指通过对失效金属构件的设计、制造及使用调查、受力分析、宏观分族正析、形貌分析、微观分析、材质检测、金相检测、化学成分分析、力学性能测定、必要时的模拟试验等手段,判断失效模式,确定失效原因,提出预防措施的技术活动和管理活动。
失效分析的意义主要有:
1、保证产品产品质量
减少和预防同类机械零件的失效现象重复发生巧纤,保障产品质量,提高产品竞争力。
2、分析失效原因
分析机械零件失效原因,为事故责任认定、侦破刑事犯罪案件、裁定赔偿责任、保险业务、修改产品质量标准等提供科学依据。
3、增加技兆宽悔术含量
为企业技术开发、技术改造提供信息,增加企业产品技术含量,从而获得更大的经济效益。
失效分析的步骤:
通过对失效金属构件的设计、制造及使用调查、受力分析、宏观分析、形貌分析、微观分析、材质检测、金相检测、化学成分分析、力学性能测定、必要时的模拟试验等手段,确定失效原因,提出预防建议。
金属失效分析