导航:首页 > 研究方法 > 数学思想方法的国内研究文献综述

数学思想方法的国内研究文献综述

发布时间:2023-09-02 03:10:01

❶ 浅谈几种常见的数学思想方法

摘要:数学思想方法以数学知识为载体,蕴涵于知识之中,是数学的精髓。文章主要介绍四种常见的数学思想方法:函数与方程思想、分类与整合的思想、数形结合的思想、化归与转化的思想。在教学过程中渗透数学思想方法,能提高教学效果,提高学生数学素养。

1对数学思想方法的认识

在数学教学和数学教育领域,数学知识、数学方法、数学思想是数学知识体系的三个层次,它们相互联系,共同发展。数学知识是数学思想方法解决问题所依附的材料;数学方法是解决问题的手段和途径,是数学思想发展的前提;数学思想是对数学对象的本质认识,是从某些具体的数学内容(概念、命题、定理)和数学认识过程中提炼出来的基本观点和想法,是数学方法的灵魂,是解决问题的指导思想,对数学活动具有指导意义。数学思想和数学方法是紧密联系的,数学思想方法通常从“数学思想”和“数学方法”两个角度进行阐述。

数学中常用的数学思想方法,概括起来可以分为两类。一类是科学思想在数学中的应用,如分析与综合、分类讨论、类比、化归、归纳与演绎思想等;另一类是数学学科特有的思想方法,如集合与对应、数学建模、数形结合、函数与方程、极限、概率统计的思想方法等。

2教学中主要的数学思想方法

数学思想方法的学习和领悟能帮助学生构建知识体系,使学生所学的知识不再是零散的知识点,能提高学生数学思维能力,提高学习效果。因此,在教学过程中必须重视数学思想方法的教学。

数学思想方法以数学知识为载体,蕴涵于知识之中,是数学的精髓,它支撑和统率着数学知识。教师在讲授概念、性质、定理的过程中应不断渗透与之相关的数学思想方法,让学生在掌握知识的`同时,又能领悟到数学思想,从而提升学生思维能力。在教学过程中,要引导学生主动参与结论的探索、发现及推导过程,搞清知识点间的联系及其因果关系,让学生亲身体验蕴含在知识中的数学思想和方法。

2.1 分类与整合的思想分类是通过比较数学对象本质属性的相同点和差异点,然后根据某一种属性将数学对象区分为不同种类的思想方法。分类讨论既是是一个重要的数学方法,又一个重要的数学思想,在解题时,它能避免思维的片面性,保证不遗不漏。

整合就是考虑数学问题时把注意力和重点放在问题的整体结构上,通过对其全面深刻的观察和分析,从整体上认识问题的实质,把中间相互紧密联系着的量作为整体来处理的思想方法。

解题时,我们常常遇到这种情况,解到某一步时,被研究的问题包含了多种情况,我们不能再按照统一标准进行下去,这就需要把条件所给出的总区域划分成若干个子区域,然后分别在各个子区域内进行解题,当分类解决完这个问题后,再把它们整合在一起,这就是分类与整合的思想。有分有合,先分后合,不仅是分类与整合的思想解决问题的主要过程,也是这种思想方法的本质属性。

这就需要我们在学习中认识到以下几点:什么样的问题需要分类研究;为什么要分类;如何分类;分类后如何研究与最后如何整合等。例如:等比数列的求和公式就分为q=1和q≠1两种情况;对数函数的单调性就分为a>1,0 2.2 数形结合的思想数学研究的对象是数量关系和空间形式,即“数”与“形”两个方面。“数”与“形”之间不是孤立存在的,而是有着密切的联系。数量关系的研究可以转化为图形性质的研究,反之,图形性质的研究可以转化为数量关系的研究,这种解决数学问题过程中“数”与“形”相互转化的思维策略,即是数形结合的思想。

数形结合的思想,既是一个重要的数学思想,也是一种常用的数学方法,为解决问题提供了方便,是解决问题的一个捷径。数形结合思想一方面,能使数量关系的抽象概念和解析式通过图形变得直观形象;另一方面,能使一些图形的属性通过对数量关系的研究,更精准、更深刻地得出图形的性质。这种“数”与“形”的相互转换,相互渗透,不仅可以使一些题目的解决简捷明快,同时还可大大拓宽我们的解题思路。华罗庚先生曾作过精辟的论述:“数与形,本是相倚依,焉能分作两边飞。数缺形时少直觉,形少数时难人微,数形结合百般好,隔裂分家万事非。切莫忘,几何代数统一体,永远联系切莫离”。它的运用,往往展现出“柳暗花明又一村”般的数形和谐完美结合的境地。

数形结合在数学解题时应用也比较广泛。例如:不连续函数讨论增减性问题,函数求最值问题;根的分布问题及数形结合在不等式中、在数列中、在解析几何中的应用等。这些都是数形结合的思想方法的体现。

2.3 化归与转化的思想化归与转化的思想就是将未知解法或难以解决的问题,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,化归为在已知知识范围内已经解决或容易解决的问题的思想方法。化归与转化思想的实质是揭示联系,实现转化。

化归与转化的思想是解决数学问题的根本思想,大部分数学问题的解决都是通过转化实现的。从某种意义上讲,解决数学问题就是从未知向已知转化的过程,解题的过程实际上就是一步步转化的过程。要想熟练运用化归与转化思想,就要积极主动地去挖掘问题之间的联系,要有丰富的联想、机敏细微的观察,要熟练、扎实地掌握基础知识、基本技能和基本方法。在学习中我们要对公式、定理、法则有深刻理解,并对典型例题和习题进行总结和提炼。人们常说:“抓基础,重转化”是学好数学的金钥匙,学习中一定要用好这把金钥匙。运用化归与转化思想的例子比比皆是,如:未知向已知的转化,复杂问题向简单问题的转化,新知识向旧知识的转化,数与形的转化,空间向平面的转化,命题之间的转化,高维向低维的转化,多元向一元的转化,函数与方程的转化等都是转化思想的体现。

2.4 函数与方程的思想函数的思想是用运动、变化的观点,分析研究具体问题中的数量关系,通过函数形式把这种数量关系刻划出来并加以研究,从而解决问题的方法。

方程的思想就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的解题思路和策略。

函数与方程的思想,既是函数思想与方程思想的体现,也是两种思想综合运用的体现,,是对知识在更高层次上的抽象、概括与提炼,是研究变量与函数之间的内在联系,并从函数与方程各部分的内在联系出发来考虑问题,研究问题和解决问题的数学思想。

着名数学家克莱因说:“一般受教育者在数学课上应该学会的重要事情是用变量和函数来思考”。一个学生仅仅学习了函数的知识,他在解决问题时往往是被动的,而建立了函数思想,才能主动地去思考一些问题。

在解题时,要学会思考这些问题:①是不是需要把字母看作变量?②是不是需要把代数式看作函数?如果是函数它具有哪些性质?③是不是需要构造一个函数,把表面上不是函数的问题化归为函数问题?④能否把一个等式转化为一个方程?等等。我们常见的运用函数思想的例子有:数列问题借助于函数思想,用函数方法来解决;遇到变量时构造函数关系式来解题;有关的最大、最值问题,可利用函数观点加以分析;实际应用问题,转化成数学语言,建立数学模型和函数关系式,应用函数相关性质来解决等。

参考文献:

[1]钱佩玲.数学思想方法与中学数学(第2版).北京师范大学出版社,2008.

[2]张顺燕.数学的思想、方法和应用.北京大学出版社,2009.

❷ 国内外怎样研究小学数学的数形结合思想方法

一、研究背景:数学是研究客观世界的空间形式与数量关系的科学,数是形的抽象概括,形是数的直观表现.华罗庚先生指出,数缺形时少直观,形少数时难入微.数形结合既是一个重要的数学思想,又是一种常用的数学方法.数形结合在数学解题中有重要的指导意义,这种“数”与“形”的信息转换,相互渗透,即数量问题和图象性质是可以相互转化的,这不仅可以使一些题目的解决简捷明快,同时还可以大大开拓我们的解题思路,为研究和探求数学问题开辟了一条重要的途径.长期以来,在教学中数学知识是一条明线,得到数学教师的重视;数学思想方法是一条暗线,容易被教师所忽视.在我们的小学数学教学中,如果教师能有意识地运用数形结合思想来设计教学,那将非常有利于学生从不同的侧面加深对问题的认识和理解,提供解决问题的方法,也有利于培养学生将实际问题转化为数学问题的能力.“数形结合”对教师来说是一种教学方法、教学策略,对学生来说是一种学习方法,如果长期渗透,运用恰当,则使学生形成良好的数学意识和思想,长期稳固地作用于学生的数学学习生涯中.作为一线教师,如何系统的运用数形结合思想进行数学教学,是我们面临的一个极富实践价值的重要课题.二、研究价值:1、通过组织、实施本课题的研究,提高教师对数形结合思想的理解,加深对教材中数形结合思想的分析能力.能在平时的教学中,时刻注意渗透数形结合思想,提升教师自身的专业素养.2、通过组织、实施本课题的研究,提升学生的思维水平,提高学生应用数形结合思想解决实际问题的能力,以适应未来社会发展的需要.三、研究目标: 1、教师有意识地运用数形结合思想进行教学设计,化抽象为形象,创造性地开发课程资源,有效地提高课堂教学质量. 2、研究“数形结合”在小学数学四至六年级领域中的应用,分阶段、有层次的渗透数形结合思想. 3、通过“数形结合”有效地提高学生学习数学的兴趣,使数形结合成为学生重要的学习方法,能运用数形结合创造性地解决抽象的数学问题.在不断地“探索”与“创造”中构建属于个人的数学思想.四、概念界定:1、数形结合:“数”和“形”是数学中两个最基本的概念,“数”,属于数学抽象思维范畴,是人的左脑思维的产物;而“形”主要指几何图形,属于形象思维范畴,是人的右脑思维的产物.它们既是对立的,又是统一的,每一个几何图形中都蕴含着与它们的形状、大小、位置密切相关的数量关系;反之,数量关系又常常可以通过几何图形做出直观地反映和描述.数形结合的实质就是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合起来,化难为易,化抽象为直观.使人充分运用左、右脑的思维功能,相互依存、彼此激发,全面、协调、深入发展人的思维能力.2、数形结合思想:所谓数形结合思想,其实质是将抽象的数学语言与直观的图像结合起来,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,是一种可使复杂问题简单化、抽象问题具体化的常用的数学思想方法.主要有以下几种解题思路:(1)以“数”变“形”;(2)以“形”变“数”;(3)“形”“数”互变.3.“渗透”指某种思想方法在某个实践过程中逐渐的渗入利用,这里主要指在小学数学课堂教学中逐步渗透数形结合思想方法.五、研究内容:1、数形结合思想在“数与代数”知识领域中的应用.2、数形结合思想在“空间与图形”知识领域中的应用.3、数形结合思想在“统计与概率”知识领域中的应用.4、数形结合思想在“实践与综合运用”知识领域中的应用.六、研究思路:1、学习查找相关理论资料;2、开始分年级教师进行具体研究;3、在具体的实践中进一步完善研究内容和研究措施;4、最后对研究效果进行提升,形成课题成果报告.七、研究方法:1.调查法:调查当前小学数学教师对数形结合思想在教学中渗透的认识,调查当前学生对数形结合思想来解题的认识状态.2、文献研究法:收集、学习、整理有关渗透数学思想方法以及数形结合思想的相关文献资料并加以分析,以供实验研究.3、案例研究法:选择不同领域的教学内容(数与代数、空间与图形、统计与概率、实践与综合运用)中的素材,作为案例进行分析研究,寻求在不同数学学习领域中有效渗透数形结合思想的途径与模式.4、经验总结法:把实验过程中积累的经验加以总结、归纳并在实验过程中加以论证.

阅读全文

与数学思想方法的国内研究文献综述相关的资料

热点内容
汽车电压降的测量方法 浏览:398
刻度尺使用方法图片 浏览:857
哈利波特魔法杖制作方法简单 浏览:305
断奶仔猪伪狂犬和脑炎的治疗方法 浏览:229
节目演用什么方法 浏览:169
小天才手表的时间在哪里设置方法 浏览:399
联想电脑支架的安装方法 浏览:957
加大电脑磁盘空间方法 浏览:978
键盘截图键在哪里设置方法 浏览:633
白垩病的治疗方法 浏览:280
偏瘫坐位平衡2级训练方法 浏览:562
影响脑干检测的方法 浏览:573
心理学研究方法这本书简单么 浏览:240
肌底液的正确使用方法 浏览:893
用什么方法能快速睡 浏览:344
客厅吸顶吊灯安装方法 浏览:759
仓鼠快速换牙齿方法 浏览:400
太岁与合神计算方法 浏览:957
楼房怎么施食最好方法 浏览:507
JH6头挂连接线接线方法 浏览:233