⑴ 高中数学的习题课的教学手段是什么
先讲某一类型题的做题步骤,然后讲一至两道例题并逐一对照步骤,学生有不懂之处及时提出并解答,最后布置习题让学生自己做,有条件的话收起来上交,教师批改后总结出大部分学生出现的问题,在下一堂课讲解,再有不懂的学生个别提出。
⑵ 如何有效进行数学解题教学
1、正方体展开图
正方体有6个面,12条棱,当沿着某棱将正方体剪开,可以得到正方体的展开图形,很显然,正方体的展开图形不是唯一的,但也不是无限的,事实上,正方体的展开图形有且只有11种,11种展开图形又可以分为4种类型:
1141型中间一行4个作侧面,上下两个各作为上下底面,共有6种基本图。
(2)追及问题
【口诀】:
慢鸟要先飞,快的随后追。
先走的路程,除以速度差,时间就求对。
例:姐弟二人从家里去镇上,姐姐步行速度为3千米/小时,先走2小时后,弟弟骑自行车出发速度6千米/小时,几时追上?
先走的路程,为3X2=6(千米)
速度的差,为6-3=3(千米/小时)。所以追上的时间为:6/3=2(小时)。
6、和比问题
已知整体求部分。
【口诀】:
家要众人合,分家有原则。
分母比数和,分子自己的。
和乘以比例,就是该得的。
例:甲乙丙三数和为27,甲;乙:丙=2:3:4,求甲乙丙三数。
分母比数和,即分母为:2+3+4=9;
分子自己的,则甲乙丙三数占和的比例分别为2/9,3/9,4/9。和乘以比例,所以甲数为27X2/9=6,乙数为:27X3/9=9,丙数为:27X4/9=12。
7、差比问题(差倍问题)
【口诀】:
我的比你多,倍数是因果。
分子实际差,分母倍数差。
商是一倍的,乘以各自的倍数,两数便可求得。
例:甲数比乙数大12,甲:乙=7:4,求两数。
先求一倍的量,12/(7-4)=4,
所以甲数为:4X7=28,乙数为:4X4=16。
8、工程问题
【口诀】:
工程总量设为1,1除以时间就是工作效率。
单独做时工作效率是自己的,一齐做时工作效率是众人的效率和。
1减去已经做的便是没有做的,没有做的除以工作效率就是结果。
例:一项工程,甲单独做4天完成,乙单独做6天完成。甲乙同时做2天后,由乙单独做,几天完成?
[1-(1/6+1/4)X2]/(1/6)=1(天)
9、植树问题
【口诀】:
植树多少棵,要问路如何?
直的加上1,圆的是结果。
例1:在一条长为120米的马路上植树,间距为4米,植树多少棵?
路是直的。所以植树120/4+1=31(棵)。
例2:在一条长为120米的圆形花坛边植树,间距为4米,植树多少棵?
路是圆的,所以植树120/4=30(棵)。
10、盈亏问题
【口诀】:
全盈全亏,大的减去小的;
一盈一亏,盈亏加在一起。
除以分配的差,结果就是分配的东西或者是人。
例1:小朋友分桃子,每人10个少9个;每人8个多7个。求有多少小朋友多少桃子?
一盈一亏,则公式为:(9+7)/(10-8)=8(人),相应桃子为8X10-9=71(个)
例2:士兵背子弹。每人45发则多680发;每人50发则多200发,多少士兵多少子弹?
全盈问题。大的减去小的,则公式为:(680-200)/(50-45)=96(人)则子弹为96X50+200=5000(发)。
例3:学生发书。每人10本则差90本;每人8 本则差8本,多少学生多少书?
全亏问题。大的减去小的。则公式为:(90-8)/(10-8)=41(人),相应书为41X10-90=320(本)
11、牛吃草问题
【口诀】:
每牛每天的吃草量假设是份数1,
A头B天的吃草量算出是几?
M头N天的吃草量又是几?
大的减去小的,除以二者对应的天数的差值,
结果就是草的生长速率。
原有的草量依此反推。
公式就是A头B天的吃草量减去B天乘以草的生长速率。
将未知吃草量的牛分为两个部分:
一小部分先吃新草,个数就是草的比率;
有的草量除以剩余的牛数就将需要的天数求知。
例:整个牧场上草长得一样密,一样快。27头牛6天可以把草吃完;23头牛9天也可以把草吃完。问21头多少天把草吃完。
每牛每天的吃草量假设是1,则27头牛6天的吃草量是27X6=162,23头牛9天的吃草量是23X9=207;
大的减去小的,207-162=45;二者对应的天数的差值,是9-6=3(天)结果就是草的生长速率。所以草的生长速率是45/3=15(牛/天);原有的草量依此反推。
公式就是A头B天的吃草量减去B天乘以草的生长速率。所以原有的草量=27X6-6X15=72(牛/天)。
将未知吃草量的牛分为两个部分:一小部分先吃新草,个数就是草的比率;
这就是说将要求的21头牛分为两部分,一部分15头牛吃新生的草;剩下的21-15=6去吃原有的草,所以所求的天数为:原有的草量/分配剩下的牛=72/6=12(天)
12、年龄问题
【口诀】:
岁差不会变,同时相加减。
岁数一改变,倍数也改变。
抓住这三点,一切都简单。
例1:小军今年8 岁,爸爸今年34岁,几年后,爸爸的年龄的小军的3倍?
岁差不会变,今年的岁数差点34-8=26,到几年后仍然不会变。
已知差及倍数,转化为差比问题。26/(3-1)=13,几年后爸爸的年龄是13X3=39岁,小军的年龄是13X1=13岁,所以应该是5年后。
例2:姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数的和是40岁时,两人各应该是多少岁?
岁差不会变,今年的岁数差13-9=4几年后也不会改变。
几年后岁数和是40,岁数差是4,转化为和差问题。则几年后,姐姐的岁数:(40+4)/2=22,弟弟的岁数:(40-4)/2=18,所以答案是9年后。
13、余数问题
【口诀】:
余数有(N-1)个,最小的是1,最大的是(N-1)。
周期性变化时,不要看商,只要看余。
例:如果时钟现在表示的时间是18点整,那么分针旋转1990圈后是几点钟?分针旋转一圈是1小时,旋转24圈就是时针转1圈,也就是时针回到原位。
1980/24的余数是22,所以相当于分针向前旋转22个圈,分针向前旋转22个圈相当于时针向前走22个小时,时针向前走22小时,也相当于向后24-22=2个小时,即相当于时针向后拔了2小时。即时针相当于是18-2=16(点)。
教学方法如下:
一、讲授法
讲授法是教师通过简明、生动的口头语言向学生传授知识、发展学生智力的方法。它是通过叙述、描绘、解释、推论来传递信息、传授知识、阐明概念、论证定律和公式,引导学生分析和认识问题。运用讲授法的基本要求是:
1、讲授既要重视内容的科学性和思想性,同时又要应尽可能的与学生的认知基础发生联系。
2、讲授应注意培养学生的学科思维。
3、讲授应具有启发性。
4、讲授要讲究语言艺术。语言要生动形象、富有感染力,清晰、准确、简练,条理清楚、通俗易懂,尽可能音量、语速要适度,语调要抑扬顿挫,适应学生的心理节奏。
二、讨论法
讨论法是在教师的指导下,学生以全班或小组为单位,围绕教材的中心问题,各抒己见,通过讨论或辩论活动,获得知识或巩固知识的一种教学方法。优点在于,由于全体学生都参加活动,可以培养合作精神,激发学生的学习兴趣,提高学生学习的独立性。一般在高年级学生或成人教学中采用。
三、直观演示法
演示法是教师在课堂上通过展示各种实物、直观教具或进行示范性实验,让学生通过观察获得感性认识的教学方法。是一种辅助性教学方法,要和讲授法、谈话法等教学方法结合使用。
四、练习法
练习法是学生在教师的指导下巩固知识、运用知识、形成技能技巧的方法。在教学中,练习法被各科教学广泛采用。练习一般可分为以下几种:
其一,语言的练习。包括口头语言和书面语言的练习,旨在培养学生的表达能力。
其二,解答问题的练习。包括口头和书面解答问题的练习,旨在培养学生运用知识解决问题的能力。
其三,实际操作的练习。旨在形成操作技能,在技术性学科中占重要地位。
五、读书指导法
读书指导法是教师指导学生通过阅读教科书或参考书,以获得知识、巩固知识、培养学生自学能力的一种方法。
六、任务驱动法
教师给学生布置探究性的学习任务,学生查阅资料,对知识体系进行整理,再选出代表进行讲解,最后由教师进行总结。任务驱动教学法可以以小组为单位进行,也可以以个人为单位组织进行,它要求教师布置任务要具体,其他学生要极积提问,以达到共同学习的目的。