① 有限元数值模拟方法
有限单元法是应用于构造应力场模拟的最广泛的数学模拟方法。其基本思想是将所研究的地质体以一定的方式(单元形状和节点个数)简化为有限个单元组成的离散化模型,再用相应的计算程序求出数值解答。利用有限元法数值模拟,可以利用地质调查和构造解析获得的较少地质应力状态的资料来反演区域内各点的应力状态,从而获得区域的构造应力场特征,加深认识区域内的构造演化。目前有限单元法的应用已由弹性力学的平面问题扩展到空间问题、板壳问题,分析对象从弹性材料扩展到塑性、粘弹性、粘塑性和复合材料。
有限元法数值模拟随着计算机技术的发展在科学计算领域得到广泛应用,20世纪80年代以来,国际上已有较大型的有限元计算程序达几百种,其中较着名的有:ANSYS、NASTRAN、ASK、ADINA、SAP等。以ANSYS为代表的数值模拟软件将有限元分析、计算机图形学和优化技术相结合,已成为科学计算领域不可缺少的有力工具。
基于本区岩石圈的三维结构特点,我们首先对本区的三层结构相互作用关系进行了模拟。对本区的物理模拟研究,前人已经做过很多工作,其中在对印度板块挤压下亚洲中东部的构造模拟中,有的反映出大型走滑断裂、裂谷和张性盆地以及压性逆冲断裂等构造现象,有的反映出多层构造中网络状流动现象,认为板内变形受塑性流动网络控制(Tapponnier et al.,1982;李建国等,1997)。这些工作往往只反映了本区的某一方面的特性,而无法对本区的构造形态做出动力学的完善解释。因此在前人的工作基础上,我们首先建立了本区的一个三层结构模型,其中中上地壳深度根据天然地震资料定为30 km,下地壳以莫霍面为其底界,根据地震测深资料取50 km。因为本模型建立的主要目的是确定岩石圈各圈层之间的作用关系,因此模型底部只考虑到100 km的深度。
有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。利用简单而又相互作用的元素(即单元),就可以用有限数量的未知量去逼近无限未知量的真实系统。
有限元分析是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。
因为实际问题被较简单的问题所代替,所以这个解不是准确解,而是近似解。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。
(2)有限元分析中的数值方法扩展阅读:
有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有限元法=Rayleigh Ritz法+分片函数”,即有限元法是Rayleigh Ritz法的一种局部化情况。
不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。
③ 如何进行有限元分析
有限元分析的基本步骤如下。
1)建立研究对象的近似模型。
在进行数值计算之前,需要建立研究对象的模型。建模过程主要依靠基础实验或者观测的结果,需要大量学科领域知识。在进行有限元分析的时候很难把研究对象的
所有细节都 包括进来,有时是因为缺乏实验观测数据,有时是需要缩小计算模,因此需要对研究对象进行不同程度的简化。通常在研究对象的几何形状、材料特性和边界条件这三个方面做适当的化。
2)将研究对象分割成有限数量的单元 研究者很难从整体上分析对象系统,需要把对象系统分解成有限数量的、形式相同、相对简单的分区或组成部分,这个过程也被称为离散化。每个分区是一个由基本单元,把空间连续的问题转化成由一些基本单元组成的离散问题。
3)用标准方法对每个单元提出一个近似解 研究者能够比较容易地分析基本单元的行为,提出求解基本单元的方法。提出适用于所有单元的标准求解方法,就可以编制计算机程序求解所有的单元。
4)将所有单元按标准方法组合成一个与原有系统近似的系统 将基本单元组装成一个近似系统,在几何形状和性能特征方面可以近似地代表研究对象。通过分析近似系统,可以了解研究对象的性能特征。找到某种标准的组装方法,就可以 用计算机程序组装数目巨大的单元。
5)用数值方法求解这个近似系统。 采用离散化之后,就不需要再求解复杂的偏微分方程组,而转换为求解线性方程组。数学家提出了许多求解大规模线性方程组的数值算法。
6)计算结果处理与结果验证
由数值计算可以得到大量的数据,如何显示、分析数据并找到有用的结论是人们一直关系的问题。目前,商用有限元软件都具有后处理功能,可以实现数据的图形化
显示,如显示物体的变形、温度场分布等,使得计算结果变得更加直观。也可以使用一些专用的数据可视化工具来处理计算结果。如何判定计算结果是否正确,是有限单元法应用中的关键问题。可 以采用与实验或观测数据对比、与简化模型对比或与理论计算结果对比。研究者的领域知识也有助于正确理解计算结果
④ 有限元方法
1,有限元法(finite element method)是一种高效能、常用的数值计算方法。科学计算领域,常常需要求解各类微分方程,而许多微分方程的解析解一般很难得到,使用有限元法将微分方程离散化后,可以编制程序,使用计算机辅助求解。
3,自从1969年以来,某些学者在流体力学中应用加权余数法中的迦辽金法(Galerkin)或最小二乘法等同样获得了有限元方程,因而有限元法可应用于以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值问题有所联系。基本思想:由解给定的泊松方程化为求解泛函的极值问题。