1.对比分析
横向对比:简单的说就是和谁对比?假如说我们上个月店铺的成交额增长了30%,那么我们是不是应该开心呢?
这里我们还要参考竞争对手的成交额,数据时代,我们可以很轻易的拿到竞争对手的相关数据。
纵向对比:我们可以把近15天的成交额以线条的形式显示出来,这样就可以很清楚的看到近期的成交额是否达到预期,有没有下降趋势,当然我们也可以以季度、月或周为单位。
2.转化分析
这里牵涉到一个问题,评判一家电商企业需要用到的一些日常统计指标:
店铺的目标用户数量:一家店铺的成交量,反映的是这家店铺对于市场的影响以及用户对于产品的满意度。
平均消费金额:店铺每年平均每位用户消费了多少,以此来定位目标人群,确定是否达到盈利的指标。
用户的复购率:判别产品满意度,假如用户购买过一次后,还会购买第二次,说明用户对于你的产品还是很满意的,这样既节省了市场推广费用,用户也会推荐给更多朋友来够买。
3.留存分析
我们通过活动等形式把用户引流到我们的流量池里,但是经过一段时间后,用户可能就会慢慢的流失了。那些留下来或者经常访问我们店铺的用户称之为留存。
我们常常用到的日活跃用户量、月活跃用户量、季度活跃用户量,来检测我们店铺的流量。有的时候可能会看到我们的日活,在一段时期内都是逐渐增加的,以为是非常好的现象,但是如果没有做留存分析的话,这个结果很可能是一个错误的。
留存是产品的核心,用户只有留下来,我们的产品才能不断增长。如果我们什么都不做的话,用户很快的就流失了。
4.产品比价
大部分电商公司会频繁搞促销,一般来说每次打的旗帜无非是全网最低,但是如何才能确定是全网最低呢?
这时候需要我们去搭建一个比价系统,这个比价系统的目的主要是为了去抓取各大电商平台商品的价格。通过各大电商平台的价格以及优惠额,来制定你自己的策略。
关于电商数据分析常用方法有哪些,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
Ⅱ 电商平台 数据分析采用什么方法
电商最重要的指标就是这几个了:
1 、商品数据分析:电商平台定期都要对商品销售进行分析,比如针对各个不同商品的销量、库存分析、商品评论等。做商品数据分析,可以从时间维度或者从不同商品的类别、价格等多个维度来做分析,这里可以做的数据图表类型很多,比如从时间维度、商品类别、价格维度等;
把电商所有平台数据统一整合到BDP个人版,然后拖拽就可以做出以上可视化图表了,分析不需要重复做!
Ⅲ 电商平台应该分析哪些数据具体怎么去分析
电商平台应该分析的数据和分析的规则如下:
1、网站运营指标:
网站运营指标主要用来衡量网站的整体运营状况,这里Ec数据分析联盟暂将网站运营指标下面细分为网站流量指标、商品类目指标、以及供应链指标。网站流量指标主要用从网站优化,网站易用性、网站流量质量以及顾客购买行为等方面进行考虑。
商品类目指标主要是用来衡量网站商品正常运营水平,这一类目指标与销售指标以及供应链指标关联慎密。这里的供应链指标主要指电商网站商品库存以及商品发送方面,而关于商品的生产以及原材料库存运输等则不在考虑范畴之内。
2、经营环境指标:
这里将电子商务网站经营环境指标分为外部竞争环境指标和内部购物环境指标。外部竞争环境指标主要包括网站的市场占有率,市场扩大率,网站排名等,这类指标通常是采用第三方调研公司的报告数据,相对于独立B2C网站而言,淘宝此方面的数据要精准的多。
网站内部购物环境指标包括功能性指标和运营指标(这部分内容和之前的流量指标是一致的),常用的功能性指标包括商品类目多样性、支付配送方式多样性、网站正常运营情况、链接速度等。
3、销售业绩指标:
销售业绩指标直接与公司的财务收入挂钩,这一块指标在所有数据分析指标体系中起提纲挈领的作用,其他数据指标的细化落地都可以根据该指标去细分。
网站销售业绩指标重点在网站订单的转化率方面,而订单销售指标重点则在具体的毛利率、订单有效率、重复购买率、退换货率方面,当然还有很多指标,譬如总销售额、品牌类目销售额、总订单、有效订单等等,这里并没有一一列出。
4、营销活动指标:
一场营销活动做的是否成功,通常从活动效果(收益和影响力)、活动成本以及活动粘合度(通常以用户关注度、活动用户数以及客单价等来衡量)等几方面考虑。这里将营销活动指标区分为日常市场运营活动指标、广告投放指标以及对外合作指标。
其中市场运营活动指标和广告投放指标主要考虑新增访客数、订单数量、下单转化率、每次访问成本、每次转换收入以及投资回报率等指标。而对外合作指标则根据具体合作对象而定,譬如某电商网站与返利网合作,首先考虑的也是合作回报率。
5、客户价值指标:
一个客户的价值通常由三部分组成:历史价值(过去的消费)、潜在价值(主要从用户行为方面考虑,RFM模型为主要衡量依据)、附加值(主要从用户忠诚度、口碑推广等方面考虑)。这里客户价值指标分为总体客户指标以及新、老客户价值指标。
这些指标主要从客户的贡献和获取成本两方面来衡量。譬如,这里用访客人数、访客获取成本以及从访问到下单的转化率来衡量总体客户价值指标,而对老顾客价值的衡量除了上述考虑因素外,更多的是以RFM模型为考虑基准。
(3)电商商户分析方法扩展阅读:
电子商务中使用分析数据的优点:
数据分析体系建立之后,其数据指标并不是一成不变的,需要根据业务需求的变化实时的调整,调整时需要注意的是统计周期变动以及关键指标的变动。
通常,单独的分析某个数据指标并不能解决问题,而各个指标间又是相互关联的,将所有指标织成一张网,根据具体的需求寻找各自的数据指标节点。当用户在电子商务网站上有了购买行为之后,就从潜在客户变成了网站的价值客户。
电子商务网站一般都会将用户的交易信息,包括购买时间、购买商品、购买数量、支付金额等信息保存在自己的数据库里面,所以对于这些客户可以基于网站的运营数据对他们的交易行为进行分析,以估计每位客户的价值,及针对每位客户的扩展营销的可能性。
参考资料来源:网络-电子商务数据分析