导航:首页 > 研究方法 > 建模分析方法

建模分析方法

发布时间:2022-02-01 09:57:12

‘壹’ 关于数学建模数据分析的方法

建议使用层次分析法,就是将指标通过专家打分,分别赋权重,然后构造一个指标函数,在通过Spss或其他统计软件,进行求解。

模型的建立:目标函数的建立,以第一个,即经济效益为例,你可以查阅经济书本,找到这些指标同经济效益的关系,来建立函数,一般是线性模型;
模型的求解:
你先用Spss,进行这5个指标的因子分析,得到贡献率高的因子,并得到它的权重系数,这就是你指标函数的权重值,这样你的指标函数就求出来了;
接着你可以用其他软件(一般我用matlab),将具体历年的数据代入指标函数,得到理念的经济效益值,最后做一个历年效益数据分析。
理论就是这样,实际就要自己操作了。

‘贰’ 需求分析的建模分析方法有哪两种

数据库设计需求
1. 需求概述
建立完善的数据库结构管理设备的基本参数、运行状态和各种工作计划。

数据库的框架和结构必须根据设备和运行状态而设计,方便提供强大的录入、查询、统计、分析和报表等各种功能操作,较好的反映平台业务的基本情况和运行状况,满足平台的基本要求。

2. 外部设计需求
2.1 标识符和状态

数据库表前缀:根据模块名定义(如用户模块:sys_)

用户名:root

密码:待定

权限:全部

有效时间:开发阶段

说明:系统正式发布后,可能更改数据库用户/密码。

2.2 使用它的程序

本系统主要利用java作为后端的应用开发工具,使用MySQL作为后台的数据库, Linux或Windows均可作为系统平台。

2.3 约定

所有命名一定要具有描述性,杜绝一切拼音、或拼音英文混杂的命名方式。
字符集采用 UTF-8,请注意字符的转换。
所有数据表第一个字段都是系统内部使用主键列,自增字段,不可空,名称为:id,确保不把此字段暴露给最终用户。
除特别说明外,所有日期格式都采用date格式。
除特别说明外,所有字段默认都设置不充许为空, 需要设置默认值。
所有普通缩影的命名都是表名加设置缩影的字段名组合,例如用户表User中name字段设置普通所以,则缩影名称命名方式为user_name_index。
2.4 专门指导

对本系统的开发者、使用这、测试员和维护人员,提出以下参考意见:

在使用数据库时,首先要参考上面的约定内容,做好软件的安装以及表格的建立。
数据库的输入统一采用键盘。对于数据库的使用权限,请参考本系统其他相关文档。
数据库的后台管理员没用等级差异,可根据实际情况添加删除管理员。
2.5 支持软件

操作系统: Linux / Windows

数据库系统:MySQL

查询浏览工具:Navicat Premium

命令行工具:mysql

注意:mysql 命令行环境下对中文支持不好,可能无法书写带有中文的 SQL 语句。

3. 结构设计需求
3.1 概念结构设计需求

概念数据库的设计是进行具体数据库设计的第一步,概念数据库设计的好坏直接影响到逻辑数据库的设计,影响到整个数据库的好坏。

我们已经得到了系统的数据流程图和数据字典,现在就是要结合数据规范化的理论,用一种模型将用户的数据要求明确地表示出来。

概念数据库的设计应该极易于转换为逻辑数据库模式,又容易被用户所理解。概念数据库设计中最主要的就是采用“实体-关系数据”模型来确定数据库的结构。

数据是表达信息的一种重要的量化符号,是信息存在的一种重要形式。数据模型则是数据特征的一种抽象。它描述的是数据的共性,而不是描述个别的数据。一般来说,数据模型包含两方面内容:

数据的静态特性:主要包括数据的基本结构、数据间的关系和数据之间的相互约束等特性。
数据的动态特性:主要包括对数据进行操作的方法。
在数据库系统设计中,建立反映客观信息的数据模型,是设计中最为重要的,也最基本的步骤之一。

数据模型是连接客观信息世界和数据库系统数据逻辑组织的桥梁,也是数据库设计人员与用户之间进行交流的共同基础。概念数据库中采用的实体-关系模型,与传统的数据模型有所不同。“实体-关系”模型是面向现实世界,而不是面向实现方法的,它主要是用使用方便,因而在数据库系统应用的设计中,得到了广泛应用。“实体-关系”模型可以用来说明数据库中实体的等级和属性。

以下是实体-关系模型中的重要标识:

在数据库中存在的实体;
实体的属性;
实体之间的关系;
3.2 逻辑结构设计需求
物理结构设计需求

1)定义数据库、表及字段的命名规范:

数据库、表及字段的命名要遵守可读性原则。
数据库、表及字段的命名要遵守表意性原则。
数据库、表及字段的命名要遵守长名原则。
2)选择合适的存储引擎:
3)为表中的字段选择合适的数据类型。

4)建立数据库结构

4. 运用设计需求
4.1 表名的命名规范

表名以英文单词、单词缩写、简写、下划线构成,总长度要求小于30位。

4.2 表字段的命名规范

字段名以英文单词、单词缩写、简写、下划线构成,总长度要求不超过30位。
字段名以名词或名词短语,字段采用单数形式。若表名由多个单词组成,则取各个单词的缩写组成,单词缩写间使用下划线作为分隔。
若某个字段是引用某个表的外键,则字段名应尽量与源表的字段名保持一致,一面混淆。
5. 安全保密设计需求
5.1 防止用户直接操作数据库的方法

通过把关键应用服务器和数据库服务器进行分离,防止用户对数据库服务器的直接操作,保证数据库安全。

5.2 应用系统的用户口令进行加密

在软件系统中,对于数据的保护、业务操作的许可是通过识别用户身份和权限来完成的。用户口令相比较,相同的话系统将该用户的操作权限分配给用户,用户再根据所分配的权限对系统进行操作。

由以上过程可知,用户口令在传输过程中容易被窃取泄漏,另外如果数据库被非法进入则其中保存的口令能够被非法查看。因此,在传输过程中和数据库中的口令记录字段不应使用明文传递和保存,应该在口令被传递前对其明文口令使用有效的主流技术,对传输数据进行加密部分描述的加密算法进行加密,在加密后传输到系统。系统将用户提交的经过加密的口令数据保存的加密口令进行比较,相一致则进行后续操作。

‘叁’ 数据建模的分析方法有哪些并写出他们的大概介绍

从目前的数据库及数据仓库建模方法来说,主要分为四类。

第一类是大家最为熟悉的关系数据库的三范式建模,通常我们将三范式建模方法用于建立各种操作型数据库系统。

第二类是Inmon提倡的三范式数据仓库建模,它和操作型数据库系统的三范式建模在侧重点上有些不同。Inmon的数据仓库建模方法分为三层,第一层是实体关系层,也即企业的业务数据模型层,在这一层上和企业的操作型数据库系统建模方法是相同的;第二层是数据项集层,在这一层的建模方法根据数据的产生频率及访问频率等因素与企业的操作型数据库系统的建模方法产生了不同;第三层物理层是第二层的具体实现。

第三类是Kimball提倡的数据仓库的维度建模,我们一般也称之为星型结构建模,有时也加入一些雪花模型在里面。维度建模是一种面向用户需求的、容易理解的、访问效率高的建模方法,也是笔者比较喜欢的一种建模方式。

第四类是更为灵活的一种建模方式,通常用于后台的数据准备区,建模的方式不拘一格,以能满足需要为目的,建好的表不对用户提供接口,多为临时表。

下面简单谈谈第四类建模方法的一些的经验。

数据准备区有一个最大的特点,就是不会直接面对用户,所以对数据准备区中的表进行操作的人只有ETL工程师。ETL工程师可以自己来决定表中数据的范围和数据的生命周期。下面举两个例子:

1)数据范围小的临时表

当需要整合或清洗的数据量过大时,我们可以建立同样结构的临时表,在临时表中只保留我们需要处理的部分数据。这样,不论是更新还是对表中某些项的计算都会效率提高很多。处理好的数据发送入准备加载到数据仓库中的表中,最后一次性加载入数据仓库。

2)带有冗余字段的临时表

由于数据准备区中的表只有自己使用,所以建立冗余字段可以起到很好的作用而不用承担风险。

举例来说,笔者在项目中曾遇到这样的需求,客户表{客户ID,客户净扣值},债项表{债项ID,客户ID,债项余额,债项净扣值},即客户和债项是一对多的关系。其中,客户净扣值和债项余额已知,需要计算债项净扣值。计算的规则是按债项余额的比例分配客户的净扣值。这时,我们可以给两个表增加几个冗余字段,如客户表{客户ID,客户净扣值,客户余额},债项表{债项ID,客户ID,债项余额,债项净扣值,客户余额,客户净扣值}。这样通过三条SQL就可以直接完成整个计算过程。将债项余额汇总到客户余额,将客户余额和客户净扣值冗余到债项表中,在债项表中通过(债项余额×客户净扣值/客户余额)公式即可直接计算处债项净扣值。

另外还有很多大家可以发挥的建表方式,如不需要主键的临时表等等。总结来说,正因为数据准备区是不对用户提供接口的,所以我们一定要利用好这一点,以给我们的数据处理工作带来最大的便利为目的来进行数据准备区的表设计。

‘肆’ 工程中的建模与分析方法有哪些

忘了

几何建模 数学建模 好多的

大学数学里学的

‘伍’ 数学建模的方法有哪些

  1. 预测模块:灰色预测、时间序列预测、神经网络预测、曲线拟合(线性回归);

  2. 归类判别:欧氏距离判别、fisher判别等 ;

  3. 图论:最短路径求法 ;

  4. 最优化:列方程组 用lindo 或 lingo软件解 ;

  5. 其他方法:层次分析法 马尔可夫链 主成分析法 等 。

建模常用算法,仅供参考:

  1. 蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决 问题的算法,同时间=可以通过模拟可以来检验自己模型的正确性,是比赛时必 用的方法) 。

  2. 数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数 据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab 作为工具) 。

  3. 线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多 数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通 常使用Lindo、Lingo 软件实现) 。

  4. 图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算 法,涉及到图论的问题可以用这些方法解决,需要认真准备) 。

  5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算 法设计中比较常用的方法,很多场合可以用到竞赛中) 。

  6. 最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些 问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助, 但是算法的实现比较困难,需慎重使用) 。

  7. 网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很 多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种 暴力方案,最好使用一些高级语言作为编程工具) 。

  8. 一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计 算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替 积分等思想是非常重要的) 。

  9. 数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分 析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编 写库函数进行调用) 。

  10. 图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文 中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问 题,通常使用Matlab 进行处理)。

‘陆’ 数学建模分析方法

算了吧,没人回答,在网络分别找吧

‘柒’ 数据分析建模步骤有哪些

1、分类和聚类


分类算法是极其常用的数据挖掘方法之一,其核心思想是找出目标数据项的共同特征,并按照分类规则将数据项划分为不同的类别。聚类算法则是把一组数据按照相似性和差异性分为若干类别,使得同一类别数据间的相似性尽可能大,不同类别数据的相似性尽可能小。分类和聚类的目的都是将数据项进行归类,但二者具有显着的区别。分类是有监督的学习,即这些类别是已知的,通过对已知分类的数据进行训练和学习,找到这些不同类的特征,再对未分类的数据进行分类。而聚类则是无监督的学习,不需要对数据进行训练和学习。常见的分类算法有决策树分类算法、贝叶斯分类算法等;聚类算法则包括系统聚类,K-means均值聚类等。


2、回归分析


回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,其主要研究的问题包括数据序列的趋势特征、数据序列的预测以及数据间的相关关系等。按照模型自变量的多少,回归算法可以分为一元回归分析和多元回归分析;按照自变量和因变量间的关系,又可分为线性回归和非线性回归分析。


3、神经网络


神经网络算法是在现代神经生物学研究的基础上发展起来的一种模拟人脑信息处理机制的网络系统,不但具备一般计算能力,还具有处理知识的思维、学习和记忆能力。它是一种基于导师的学习算法,可以模拟复杂系统的输入和输出,同时具有非常强的非线性映射能力。基于神经网络的挖掘过程由数据准备、规则提取、规则应用和预测评估四个阶段组成,在数据挖掘中,经常利用神经网络算法进行预测工作。


4、关联分析


关联分析是在交易数据、关系数据或其他信息载体中,查找存在于项目集合或对象集合之间的关联、相关性或因果结构,即描述数据库中不同数据项之间所存在关系的规则。例如,一项数据发生变化,另一项也跟随发生变化,则这两个数据项之间可能存在某种关联。关联分析是一个很有用的数据挖掘模型,能够帮助企业输出很多有用的产品组合推荐、优惠促销组合,能够找到的潜在客户,真正的把数据挖掘落到实处。4市场营销大数据挖掘在精准营销领域的应用可分为两大类,包括离线应用和在线应用。其中,离线应用主要是基于客户画像进行数据挖掘,进行不同目的针对性营销活动,包括潜在客户挖掘、流失客户挽留、制定精细化营销媒介等。而在线应用则是基于实时数据挖掘结果,进行精准化的广告推送和市场营销,具体包括DMP,DSP和程序化购买等应用。

‘捌’ 数学建模主要有哪些分析方法

2常用的建模方法(I)初等数学法。主要用于一些静态、线性、确定性的模型。例如,席位分配问题,学生成绩的比较,一些简单的传染病静态模型。(2)数据分析法。从大量的观测数据中,利用统计方法建立数学模型,常见的有:回归分析法,时序分析法。(3)仿真和其他方法。主要有计算机模拟(是一种统计估计方法,等效于抽样试验,可以离散系统模拟和连续系统模拟),因子试验法(主要是在系统上做局部试验,根据试验结果进行不断分析修改,求得所需模型结构),人工现实法(基于对系统的了解和所要达到的目标,人为地组成一个系统)。(4)层次分析法。主要用于有关经济计划和管理、能源决策和分配、行为科学、军事科学、军事指挥、运输、农业、教育、人才、医疗、环境等领域,以便进行决策、评价、分析、预测等。该方法关键的一步是建立层次结构模型。

‘玖’ 数学建模中的分析方法有哪些

数学建模分析方法大体分为机理分析和测试分析两种。
机理分析:根据对客观事物特性的认识,找出反映内部机理的数量规律,建立的模型常有明确的物理或现实意义。
测试分析:将研究的对象看做一个“黑箱”系统(意思是它的内部机理看不清楚),通过对系统输入、输出数据的测量和统计分析,按照一定的准则找出与数据拟合最好的模型。
希望对你有帮助

‘拾’ 常用的分析方法及模型有哪些

质量及生产管理工具

1.TPM:生产改善过程中的重要工具之一

2.TQM:一项持续变革的有效管理体系

3.定置管理:强化现场管理和谋求系统改善的科学管理方法

4.5S现场管理法:现场科学管理的基础工具

5.六西格玛:世界最先进的质量管理法

6.JIT生产方式:使生产有效进行的新型生产方式

7.QFD法:一种顾客驱动的先进质量管理应用技术

8.田口方法:质量管理利器、企业技术创新不可或缺的工具

9.甘特图:最常用的项目控制管理的有效工具

10.OPT:改善生产管理技术的新方式

11.PDCA:循环有效控制管理过程和工作质量的工具

12.AUDIT法:保证产品质量的先进质量管理控制方法

13.大规模定制:21世纪最重要的、最具竞争优势的生产模式

阅读全文

与建模分析方法相关的资料

热点内容
教师主导学生主体是教学方法吗 浏览:682
脑卒中的识别方法图片 浏览:673
400塑料雨水管安装方法 浏览:655
民宿吊床安装方法 浏览:612
男生pc肌锻炼方法视频 浏览:919
有哪些常用说明方法 浏览:828
近视有什么方法能让眼睛好 浏览:103
175x24用简便方法计算 浏览:214
酒刺疙瘩的解决方法是什么 浏览:243
画画如何体现空间感的方法 浏览:399
笔记本电脑电池校正小方法 浏览:491
画一个书签的简单方法 浏览:723
研究四边形内角和的方法有哪些 浏览:888
我的世界身份证登录方法手机 浏览:494
丰田赛车训练方法 浏览:779
侍候别人最好的方法是什么 浏览:795
育肥行情分析方法 浏览:131
哑臀训练方法图解 浏览:749
生殖器泡疹治疗方法 浏览:23
熊娃娃机器人使用方法 浏览:7