A. (VOCs)六种检测方法中,PID是否可行,那种更好
从学者们争相提出“VOCs在特定气象条件下(如光照,温度等)能生产以臭氧为主的光化学烟雾“以来,VOCs的热度直线上升。从最初的试点,到可以安装,再到工厂必须安装 TVOC,VOC和VOCs的详细含义简单来说TVOC是检测VOCs中主要的几个成分,具有一定针对性,检测仪器只有气相色谱分析仪。如果是说发挥性有机物那就应该是VOCs,只检测总量,不区分具体成分。 (VOCs)检测方法主要有气相色谱-火焰离子化检测法(GC-FID)、傅里叶红外法(FTIR)、光离子化检测法(PID),非色散红外、固态电化学,半导体这6种方法。 目前国家标准认可的VOCs检测方法只有气相色谱法,但是根据不同的检测要求,检测目的,不同的预算选择不同检测原理的产品是没有问题的。一来环境VOCs检测的最终目的是督促治理,并不是实验室研究中需要的精准分析。二来国家,地方的环保部门对于VOCs的检测也都是“重点区域、重点行业、重点企业VOCs排放总量控制”。所以小编认为价格高昂的气相色谱是不会被普遍推广和要求安装的。 厂界VOCs的检测,最常用的就是光离子原理PID传感器。如海格通江BQK系列,PID传感器价格合理,灵敏度高,检测主要就针对挥发性有机物,但是寿命短,对工作环境要求较高。其次推荐非色散红外原理。红外原理VOCs价格和PID传感器相当,灵敏度不高,寿命长,可以拆卸维护,这方面海格通江有深入的研究,另外就是固态电化学VOCs传感器,价格很便宜,灵敏度不及PID却高于非色散红外,寿命高于PID却低于红外。最后是半导体,半导体灵敏度高,但是考虑到原理特征,想用好比较难,需要很多补偿和数据处理。
B. 有组织废气中挥发性有机物VOC的采样
挥发性有机物(VOCs)是环保的热点研究和控制的项目,它并不是一种物质,而是一类物质的总称,一般包括烃类、醛类、酮类、酯类和其他物质等等,一般认为具有挥发性和参与光化学反应性。其来源复杂,成分复杂,目前国家还没有出台能够完全囊括其所有项目的方法,只对一些常见的物质有相应的检测方法。
对于挥发性有机物,通过废气排气筒排放是其最大的污染来源,为了能获得比较准确的排放浓度和总量,为排污控制做好依据,下面就来浅谈一下有组织废气中的挥发性有机物的采样方法。
目前常见的采样方法有三种,气袋直接采样法,吸附管直接采样法和气袋-吸附管联合采样法。
气袋直接采样法。将采样袋直接连到抽气泵,将袋中的气体抽去后装入真空箱,并关闭密封真空箱。将加热采样管伸入采样孔内,尽量靠近排气管道中心位置,将采样管加热到120度,使用真空箱开始采样,当气袋内采样体积达到气袋最大容积的 80%左右时采样结束采样,取出采样袋密封避光保存。注意:采样袋采样开始前,需要先用排气润洗气袋3-5遍。
吸附管直接采样法。使用装填号吸附剂的吸附采样管,将加热采样管伸入采样孔内,尽量靠近排气管道中心位置,将采样管加热到120度,一般推荐的采样流量为20-50毫升/分钟,每个样品至少采气300毫升,采气量多建议不超过2000毫升。废气温度较高,含湿量大2%,影响吸附采样管的吸附效率时,应将吸附采样管冷却到0-5度进行采样,采样结束后,将采样管密封,低温保存。注意:在采集样品的同时,还要制作穿透样品和全程序空白样品。
气袋-吸附管联合采样法。先参考气袋直接采样法,一般使用3升的采气袋,采集约2升的气体,然后将吸附管与气袋相连接,推荐使用50毫升/分钟的流量,从气袋中转移气体至少150毫升。
在采样的过程中同步测量排气的参数(一般包括排气温度、含湿量、排气动静压、排气流速等),采集的样品数量参照相关的排放标准来,一般可以连续一小时采样或者在一小时内等时间间隔采集3-4个样品。
对于监测方法中包含的挥发性有机物物质,一般可以直接进行定性和定量分析,对于方法中未包含的物质,一般采用某种物质(一般为甲苯)来等效定量,或者通过方法验证,验证分析方法同样适用于该种物质的分析,就也可以使用该方法对物质进行定性和定量。
C. vocs监测原理是什么
大部分挥发性有机物(VOCs)属于易燃易爆品,部分有毒甚至剧毒,并且可以通过反应生成PM2.5和臭氧等大气污染物,及时检测出VOCs的浓度能够有效减少爆炸事件的发生和降低其对大气的污染程度。
国内常用VOCs检测方法主要有气相色谱-火焰离子化检测法(GC-FID)、傅里叶红外法(FTIR)、光离子化检测法(PID)等。
请采纳
D. 挥发性气体(VOC)探测方法
垃圾填埋场挥发出的空气含有大量的挥发有机污染物(Volatile Organic Compounds,VOCs),虽含量低,但毒性强,对环境的毒害程度不容忽视,在美国等一些发达国家,已将微量的芳烃化合物和卤代化合物作为对垃圾场的常规监测项目。除挥发一部分外,更多的污染组分停留在渗漏液中。当前,垃圾场大部分采用挖坑填埋的方法,虽然它具有投资少,见效快的特点。但防渗措施处理不当,会对土壤和地下水造成不可估量的危害。据表8.3.1、8.3.2所示,垃圾渗漏液中的有机和无机组分比饮用自来水高出许多倍,可通过取样检测土壤、水中各组分的浓度以及挥发有机组分(VOC)的浓度来圈定污染区。对VOC的检测主要通过现场采样(水、土样、气),室内分析的办法,需要专门的实验室和仪器设备。
垃圾填埋场空气的主要成分是CH4和CO2,当然仅考虑CH4和CO2是远远不够的,还需分析对人健康危害较大的苯类、烷烃类化合物,这类物质多达六七十种。空气中挥发有机污染组分的分析可用吸附管吸附-热脱吸附法和气相色谱-质谱仪来完成。将具有不同吸附能力的吸附管,内填充碳分子筛和硅胶的多层吸附管,在吸附管前端接装有无水硫酸铜的玻璃管除去空气中水分,放在离地高度约1 m的三角架上,以0.20 L/min的速率在多个采样点采集20 min,然后取下取样管,密封,送实验室在尽可能短的时间内完成分析。
气体CH4和CO2的分析可用气相色谱(GC)来完成,配氢火焰离子检测器(FID)加镍转换炉可完成对CH4和CO2的检测。气体浓度定量需要用标气定标,用镍触发酶填充柱先将CO2转化为甲烷,通过甲烷来换算成CO2。
若是采集的土样,可先加入少量去离子水,把样品浸泡在水中,用吹扫-捕集法进行前预富集处理后,将吹扫出的气体送入GC分析。GC/MS选择离子法对一些高分子的有机化合物进行定量和定性分析很方便。水样与土样分析基本一致,如果想了解各成分的具体的分析流程和方法可参考国标或美国环保局(USEPA)公布的操作规程。图8.3.20是垃圾场挥发物的气相色谱分析结果。共检测出多达63种VOCs,其中苯、甲苯、乙苯、萘、一氯甲烷、二氯甲烷、氯仿、四氯化碳、氯乙烯、三氯乙烯、四氯乙烯、氯苯、1,2-二氯苯、1,3-二氯苯、1,4-二氯苯、1,2,4-三氯苯是毒性强的致癌物,被美国环保局列为优先控制的污染物。
图8.3.20 垃圾填埋场样品的总离子色谱图
E. 水中VOC怎么分析,有没有这方面的GB
水中可能存在的挥发性有机物VOC
美国ASTM d3960-98标准将voc定义为任何能参加大气光化学反应的有机化合物。
美国联邦环保署(EPA)的定义:挥发性有机化合物是除一氧化碳、二氧化碳、碳酸、金属碳化物、金属碳酸盐和碳酸铵外,任何参加大气光化学反应的碳化合物。
世界卫生组织(WHO,1989)对总挥发性有机化合物(TVOC)的定义为,熔点低于室温而沸点在50-260℃之间的挥发性有机化合物的总称。
有关色漆和清漆通用术语的国际标准ISO 4618/1-1998和德国DIN 55649-2000的定义是,原则上,在常温常压下,任何能自发挥发的有机液体和/或固体。同时,德国标准在测定VOC含量时,又做了一个限定,即在常压下,沸点或初馏点低于或等于250℃的任何有机化合物。
最方便和最常见的方法是根据沸点来界定哪些物质属于VOC,而最普遍的共识认为VOC是指那些沸点等于或低于250℃的化学物质。所以沸点高于250℃的那些物质不归入VOC的范畴,往往被称为增塑剂。
在中国国家标准GB/T 18883-2002 《室内空气质量标准》中对总挥发性有机化合物(Total Valatile Organic Compounds TVOC)的定义是:利用Tenax GC和Tenax TA采样,非极性色谱柱(极性指数小于10)进行分析,保留时间在正己烷和正十六烷之间的挥发性有机化合物。
F. 挥发性有机污染物 (Volatile Organic Compounds) 的测定
吹扫-捕集气相色谱-质谱法
方法提要
借助吹扫-捕集装置,用高纯氦 (或氮) 气将土壤试样中的卤代烃、苯系物、内标、替代物标准等可吹扫挥发性有机物吹脱出并被装有适当吸附剂的捕集阱捕集,捕集后的挥发性有机物经加温、高纯氦气解析后直接导入气相色谱毛细管柱,程序升温色谱分离后质谱检测。
方法适用于土壤试样中甲基叔丁基醚、卤代烃、苯系物、氯苯类等挥发性有机物(VOCs) 的测定。本方法可以检测下列化合物 (表85.13) 。
表85.13 分析化合物列表
方法检出限与仪器灵敏度和试样基质等有关,当取样量为 5.00g 时,检出限为0.20~ 0.80ng / g。
仪器与装置
气相色谱-质谱仪 能满足检测灵敏度要求的四极杆气相色谱-质谱联用仪或离子阱气相色谱-质谱联用仪。电子轰击源 (EI) 。
吹扫-捕集系统 根据待测目标物选择适当捕集阱,推荐选用由聚 2,6-苯基对苯醚 (Tenax)-硅胶-碳分子筛各为 1/3 填料制作的捕集阱。5mL、25mL 两种型号砂芯式吹扫管。根据目标物检出限和 GC-MS 灵敏度确定试样吹扫体积。常用 5mL 吹扫管,如果 5mL 满足不了目标物检出限要求,再选用 25mL 吹扫管。
气相色谱柱 能保证各待测目标物较好分离并与吹扫-捕集、质谱检测相匹配,推荐以下型号色谱柱:
色谱柱1,DB-624弹性石英毛细管柱,60m×0.32mmi.d,1.8μm膜厚;
色谱柱2,Rtx-502.2弹性石英毛细管柱,60m×0.32mmi.d,1.8μm膜厚;
色谱柱3,HP-5、DB-5、SPB-5等,30m×0.25或0.32mmi.d,1.0μm膜厚。
40mL带内衬有聚四氟乙烯膜螺旋盖的VOA专用样品瓶。
搅拌磁转子。
10μL、25μL、50μL、100μL、1000μL、5000μL气密性微量注射器。
容量瓶50mL,带磨口塞的A级容量瓶。
样品瓶40mL,带内衬有聚四氟乙烯膜螺旋盖棕色VOA瓶。
试剂
空白试剂水蒸馏水在高纯氮气流下煮沸30min,冷却后GC-MS检测,不含或低于待测目标物检出限。
空白土壤不含或低于待测目标物检出限的土壤。
甲醇农残级或HPLC级。不含目标物或低于待测目标物检出限。保存在无污染区。
保护剂一水合硫酸氢钠,200g/L水溶液。
挥发性有机化合物混合标准物质甲基叔丁基醚、卤代烃、苯系物、氯苯类等挥发性混合标准物质。根据需要购买不同含量的有证混合标准储备液。所有标准储备液均在-18℃以下的冰箱中保存备用。
二级储备液用气密性微量注射器将挥发性有机化合物标准溶液稀释至10μg/mL,甲醇定容,在-18℃以下冰箱中保存备用。
标准的定期校正挥发性有机物标准应该定期检查,当发现与最早标准相比偏差大于15%时应更新标准。
替代物标准4-溴氟苯、甲苯-d8、二溴氟甲烷,甲醇介质,逐级稀释至50μg/mL。P&T-GC/MS分析前,由自动进样器将1μL替代物溶液添加到每一个样品、标准和空白中。用于监测样品处理、分析带来的污染、基体干扰等。替代物标准溶液应在-18℃保存备用。
内标氟苯、1,4-二氯苯-d4等,甲醇介质。分析前由自动进样器将浓度50μg/mL的内标1μL添加到标准、样品和空白样品中,内标法定量。内标需在-18℃保存备用。
载气氦气、氮气,纯度99.999%,分别通过装有5分子筛、活性炭、硅胶的净化管净化。
分析天平0~50g量程,精确度达到0.0001g。
样品采集、保存和制备
将1粒搅拌磁转子和200g/L硫酸氢钠基体保护剂溶液5mL加入到40mLVOA小瓶中,盖好盖后称量,记下质量。当采样点位置确认后,打开已称量的采样瓶,迅速将质量约为5g的土壤样品放入小瓶中,并立即擦净螺纹口上粘附的土壤并封盖。清除瓶身外侧粘附的土壤,再次称重并记下质量。两次质量差即为土壤样品取样量。一个样品应同时采集正负双样。同时再采集一瓶无任何保护剂的原样一瓶(40mLVOA),顶上不留空间。用作备份样和含水量测定。对高含量样品可以只采集原样一瓶,实验室分取后直接测定。采集的试样需低温保存并尽快送实验室检测。带基体保护剂的试样需倒置放置。加保护剂的样品用于低含量样品检测,原样用于样品验证和高含量样品测定。
样品到达实验室后立即转入4℃左右冷藏设备中保存直到分析,运输过程中和样品贮存区应远离可能导致污染的挥发性有机物气体。不能在有尾气存在的地方采集或贮存样品。
所有样品在采集后尽快分析,保存期不超过10d。
分析步骤
1)校准曲线。准确称取5.00g空白土壤于40mL样品瓶中,加入1粒搅拌磁转子、5mL200g/L硫酸氢钠基体保护剂,再加入不同质量的目标物标准溶液,迅速封盖,上机分析。
初始标准。配制0.00ng、10.0ng、50.0ng、100ng、400ng、800ng、1500ng系列质量水平的标准。按吹扫捕集-气相色谱质谱法的预处理步骤处理和分析,通过质量与对应响应值进行线性回归,得到待测目标物线性回归方程。挥发性有机物标准不稳定,标准系列需每天重新配制。
确证标准。配制标准曲线中中等质量的标准溶液(本方法推荐200ng)作为标准曲线的确证标准。至少每测定10个试样后,或分析结束时,应用确证标准确证标准曲线,如确证标准与初始标准的偏差超过20%时,应重新配制标准曲线。超标试样应在新标准曲线下重新测定。
气相色谱条件。气化室温度190℃,分流进样,分流比1∶15,柱前压74.2kPa。程序升温,初温40℃,保持2min,以10℃/min升至180℃,再以40℃/min升至220℃,保持4min。
质谱条件。离子源温度200℃,接口温度210℃。离子源EI源,电离能量70eV。全扫描检测模式,扫描速度600u/s,扫描范围45~280m/z,溶剂延迟时间3min。选择离子扫描,目标化合物定性及定量离子见表85.14。目标物、替代物标准、内标定量离子首选基峰离子,如遇干扰则选无干扰离子。
表85.14 目标化合物特征离子表
续表
吹扫-捕集条件。吹脱气(高纯氮气)流速40mL/min,吹扫时间11min,样品温度40℃。脱附预热时间2min,预热温度40℃;脱附温度190℃,脱附时间0.5min;烘焙温度220℃;烘焙时间10min;除水装置温度,吹扫时110℃,烘焙时240℃。
GC-MS仪器调谐。先用全氟三丁胺(FC-43)对GC-MS仪器进行自动调谐(Autotune),满足全氟三丁胺质量强度标准后,再用25ng4-溴氟苯(BFB)调节GC/MS系统,使其满足表85.15的规定,方能开始试样分析。每隔12h需要用4-溴氟苯继续对GC/MS校准,使其持续满足表85.15的规定。
表85.15 4-溴氟苯质量强度准则①
2)试样检测。将现场采集好的样品(已经加有基体保护剂和搅拌子)进行吹扫-捕集气相色谱-质谱测定,测定前由自动进样器加入1μL浓度为50μg/mL的替代物标准(4-溴氟苯、甲苯-d8、二溴氟甲烷)和内标(氟苯、1,4-二氯苯-d4)到要分析的试样中。余下按分析条件工作。高含量样品采用从原样中分取适当质量样品测定。
3)色谱图的考察。
图85.3 33种挥发性有机物标准总离子流色谱图
4)定性、定量分析。
a.定性分析。将试样待测物保留时间、扣除本底空白质谱图与预期标准目标物保留时间、质谱图相比较并结合随机谱库进行定性分析。试样分析时间与标准分析时间相差不得超过12h。峰高极大值对应的时间即为保留时间。
在仪器状态稳定的条件下,定性的确证必须满足试样待测目标物保留时间、质谱图与标准目标物的保留时间、质谱图相一致。即试样待测目标物保留时间应在标准目标物保留时间的±0.06min之内,且标准质谱图中相对强度大于10%的所有特征离子必须出现在试样质谱图中,扣除背景后的试样中离子强度与标准质谱图中离子强度符合度偏差应在±20%之内(例,在标准质谱图中一个具有丰度为50%的离子,在试样中相应强度应在30%~70%之间)。对有些重要离子(如分子离子),虽然其相对强度小于10%,也应列入评估中。
b.定量分析。内标法定量。所有定量均采用目标化合物定量离子的峰面积定量。以标准系列中各目标化合物峰面积与内标峰面积的比对目标化合物质量作图,得到该目标化合物定量校准曲线。根据试样中目标物与内标物的峰面积比,由定量曲线得到试样中目标物的质量,再根据取样量计算出试样中浓度。目标化合物峰面积、内标峰面积和定量校准曲线可以由GC-MS仪器工作软件自动完成,定量校准曲线也可以由EXCEL工作软件完成。对自动积分的峰面积应仔细检查峰基线,对不合理基线进行手动修正。试样中挥发性有机物含量的计算:
岩石矿物分析第四分册资源与环境调查分析技术
至少采用5个质量浓度水平制作校准曲线,校准曲线的线性相关系数必须满足R2≥0.995。
对含量接近检出限水平的试样,可以采用与其浓度相近的标准单点校准。对于含量超过标准曲线上限的试样应减小取样量或稀释,重新测定,使其峰面积保持在校准曲线的线性范围内。对于含水量大于1%的试样应作校正,报出结果为干基结果。
5)质量控制。
实验室试剂加标。每批试样或至多20个试样要进行一次实验室试剂加标分析,按回收率百分数来计算准确度。假如分析组分回收率不在60%~130%,初步认为分析失控,必须查找问题原因并加以解决,否则不能继续分析试样。
试样基体加标。每批试样或至多20个试样进行一个试样基体加标分析。加标浓度不得低于原始试样的背景浓度。
空白和平行双样。每批试样或至多20个试样至少进行一个全流程试剂空白和一个平行双样分析,以监测分析流程中玻璃器皿、试剂、溶剂等带来的干扰和分析精度。
必须调节GC-MS系统符合4-溴氟苯要求(表85.15)。
确证检查。检查时间为每日分析开始和分析结束,以评价分析系统是否正常。当分析超过8h或每分析10个试样后,应用确证标准检查仪器的工作状态,若确证标准与最初标准相比偏离大于20%,需重新测定标准系列,若偏离仍大于20%,需重新制作校准曲线。
替代物标准回收率限值。见表85.16。
表85.16 替代物标准回收率限值
6)方法性能指标。
方法检出限。准确称取5.00g空白土于40mLVOA样品瓶中,加入搅拌磁转子、5mL200g/L硫酸氢钠基体保护剂,再加入适量标准溶液使其添加质量约为10ng,迅速封口按选定工作条件分析。以3倍噪声信号对应的质量与所检测土壤质量的比作为待测组分方法检出限。表85.17是经多次测定后报出的方法检出限。
线性范围。在选定的分析条件下,氯乙烯的线性范围在8.0~1500ng之间,苯系物在2.00~1200ng,其他组分在3.00~1500ng之间。其线性相关系数均在0.997以上。
基体加标回收率及方法精密度。称取5.00g基体土于40mLVOA样品瓶中,加入转子、5mL200g/L硫酸氢钠基体保护剂,再加入适量标准溶液使其浓度为5ng/g,迅速封口按选定工作条件分析,平行测定7次,计算基体加标回收率及方法精密度。各组分的加标回收率及方法精密度见表85.17。
表85.17 检出限、基体加标回收率及方法精密度
续表
注意事项
1)检测过程中的污染主要可能源自实验室内产生的挥发性有机物如非聚四氟乙烯管路、吹扫气不纯和捕集阱可能带来干扰。试剂空白分析和校准可以反映污染的存在。如果发现空白中存在待测组分,应更换吹扫气和再生分子筛净化管。不能从检测组分中减空白的办法来校正。如果实验室报出了未经校正而又明显存在空白污染的检测结果时,应在检测报告中予以相应说明。
2)如果分析高浓度试样后接着分析低浓度试样会造成低浓度试样污染,分析结果失真。应在分析高浓度试样后分析一个或多个空白样,防止试样间的交叉污染和记忆效应。
3)特别注意分析二氯甲烷时环境带来的污染。二氯甲烷有很强的穿透性,在样品采集、运输、储存时应避免或远离二氯甲烷污染源,来自高浓度实验室的工作服都有可能带来污染。
4)在样品运输和储存过程中,由于挥发性有机物(特别是氟代烃和二氯甲烷)的扩散作用可能造成污染物渗透过样品瓶的密封垫进入样品或高浓度样品从内扩散到外面造成其他样品污染等,因此每个样品需用塑料袋封装保存或在塑料袋中加入一定量活性炭,并采集现场空白监测此类污染。
5)搅拌子、基体改进剂的添加应该在洁净实验室完成,第一次称量和第二次称量最好在样品采集现场同时进行。
6)正式取样前,最好在天平上预称5.0g,以估计体积大小,防止实际样品质量与5.0g偏离较大。
7)基体保护剂添加完后,盖上盖子,倒置,检查是否渗漏。如果渗漏,重新采样。
8)对含量较高试样也可采集原样回实验室分取后测定。
G. 涂料vocs怎么测定
VOC 是 Volatile Organic Compound( 挥发性有机化合物 ) 的缩写 , 目前国际上通用的对涂料产品中的VOC 的定义是指在与涂料产品接触的大气的正常温度和压力下能自行蒸发的任何有机液体或固体 , 通常将涂料产品中在常压下沸点不大于 250 ℃的任何有机化合物都定义为挥发性有机化合物 (VOC) 。在美国的某些政府法规中 ,VOC 仅用来指那些在大气中具有光化学活性的有机化合物 , 任何其他的不参与大气中光化学反应的有机化合物都被定义为豁免化合物。即除了一氧化碳、二氧化碳、碳酸 、金属碳化物、金属碳酸盐、碳酸铵之外的能参与大气中光化学反应的任何含碳化合物都是 VOC 。
VOC 的计算方法
VOC 表示方法不同 , 其含量的计算方法也不同 ,通常采用以下几种计算方法 :
a)以质量分数表示的涂料产品的 VOC 含量。
VOC = 100 - NV - m w (1)
式中 :
VOC ———以质量分数表示的涂料产品的 VOC含量 , %;
NV ———不挥发物质量分数 , %;
m w ———水的质量分数 , % 。
b)以 g/ L 表示的涂料产品的 VOC 含量。
VOC = (100 - NV - m w )×ρs × 10
(2)
式中 :
VOC ———以 g/ L 表示的涂料产品的 VOC 含量 ,g/ L ;
NV ———不挥发物质量分数 , %;
我国对 VOC 的定义是将涂料产品中的总挥发物含量扣除水分含量 , 其计算公式可由公式 (2) 转换。目前我国主要对室内装修用涂料产品和水性涂料产品考察其 VOC 含量。
H. 如何确定企业物料VOCs含量
在实际生产中,因不同工艺环节进出料的变化,物料VOCs含量在不同工艺环节是不同的,需按工序逐一核实是否属于VOCs物料(VOCs质量占比是否大于等于10%)。
企业应提供每一工序使用原辅材料的化学品安全技术说明书(MSDS)数据或检测报告,以及产品说明书等,按企业实际配比计算施工状态下的物料VOCs含量。在企业核发排污许可证时,应要求企业确认每一工序使用物料的VOCs含量,便于开展后续环境管理工作。
环保人员可根据企业原辅材料出入库清单,进行现场核实,如无法提供相关信息证实VOCs质量占比低于10%,且未采取无组织排放控制措施的,认定为违法行为。环保人员也可现场采样,经第三方实验室分析确定VOCs含量。
I. 你知道哪些VOCS废气处理技术
卤代烃废气一般具有水溶性低、生化性差、氧化和焚烧过程易产生二次污染等特点,因此吸附法是目前相对最合适的卤代烃废气处理技术,常规吸附法一般采用活性炭或活性碳纤维作为吸附剂,活性炭比表面积相对较小,脱附性能较差,回收溶剂品质一般,且活性炭表面带有催化功能,易导致卤代烃少量分解产生酸性物质;活性碳纤维吸附容量较高,但易被氧化。
大孔树脂具有良好的吸附性能,具有吸附容量大、易再生、选择性好、耐酸碱、回收溶剂品质好等优点,之前常用于废水中有机物的吸附处理,目前正逐步用于VOCs废气的处理。
针对目前卤代烃废气处理存在的问题,海普的吸附+(VRRP)工艺核心工艺就是采用HDV型高分子纳米吸附剂,可将废气中的卤代烃吸附去除。
吸附饱和后,用蒸汽对纳米吸附剂进行脱附再生,卤代烃蒸汽能够冷凝回收。具体工艺如下:
图2:吸附工艺装置实体图
J. 环境检测VOC是什么
VOC:挥发性有机化合物。
VOC是挥发性有机化合物(volatile organic compounds)的英文缩写。普通意义上的VOC就是指挥发性有机物;
但是环保意义上的定义是指活泼的一类挥发性有机物,即会产生危害的那一类挥发性有机物。
(10)常用的vocs定性分析方法扩展阅读:
VOC室外主要来自燃料燃烧和交通运输;室内主要来自燃煤和天然气等燃烧产物、吸烟、采暖和烹调等得烟雾,建筑和装饰材料、家具、家用电器、清洁剂和人体本身的排放等。
烟草行业:油墨、有机溶剂;
纺织品行业:鞋类制品所用的胶水等;
玩具行业:涂改液、香味玩具等;
家具装饰材料:涂料、油漆、胶黏剂等;
汽车配件材料:胶水、油漆等;
电子电气行业:在较高温度下使用时会挥发出VOC、电子五金的清洁溶剂等;
其他:洗涤剂、清洁剂、衣物柔顺剂、化妆品、办公用品、壁纸及其他装饰品。
参考资料:网络----VOC