导航:首页 > 研究方法 > 聚类分析数据变换的方法及特点

聚类分析数据变换的方法及特点

发布时间:2023-08-19 00:36:43

㈠ 聚类分析法

聚类分析,亦称群分析或点分析,是研究多要素事物分类问题的数量方法。其基本原理是,根据样本自身的属性,用数学方法按照某些相似性或差异性指标,定量地确定样本之间的亲疏关系,并按亲疏关系的程度对样本进行聚类(徐建华,1994)。

聚类分析方法,应用在地下水中,是在各种指标和质量级别标准约束条件下,通过样品的各项指标监测值综合聚类,以判别地下水质量的级别。常见的聚类分析方法有系统聚类法、模糊聚类法和灰色聚类法等。

(一)系统聚类法

系统聚类法的主要步骤有:数据标准化、相似性统计量计算和聚类。

1.数据标准化

在聚类分析中,聚类要素的选择是十分重要的,它直接影响分类结果的准确性和可靠性。在地下水质量研究中,被聚类的对象常常是多个要素构成的。不同要素的数据差异可能很大,这会对分类结果产生影响。因此当分类要素的对象确定之后,在进行聚类分析之前,首先对聚类要素进行数据标准化处理。

假设把所考虑的水质分析点(G)作为聚类对象(有m个),用i表示(i=1,2,…,m);把影响水质的主要因素作为聚类指标(有n个),用j表示(j=1,2,…,n),它们所对应的要素数据可用表4-3给出。在聚类分析中,聚类要素的数据标准化的方法较多,一般采用标准差法和极差法。

表4-3 聚类对象与要素数据

对于第j个变量进行标准化,就是将xij变换为x′ij

(1)总和标准化

区域地下水功能可持续性评价理论与方法研究

这种标准化方法所得的新数据x′ij满足

区域地下水功能可持续性评价理论与方法研究

(2)标准差标准化

区域地下水功能可持续性评价理论与方法研究

式中:

由这种标准化方法所得的新数据x′ij,各要素的平均值为0,标准差为1,即有

区域地下水功能可持续性评价理论与方法研究

(3)极差标准化

区域地下水功能可持续性评价理论与方法研究

经过这种标准化所得的新数据,各要素的极大值为1,极小值为0,其余的数值均在[0,1]闭区间内。

上述式中:xij为j变量实测值;xj为j变量的样本平均值;sj为样本标准差。

2.相似性统计量

系统聚类法要求给出一个能反映样品间相似程度的一个数字指标,需要找到能量度相似关系的统计量,这是系统聚类法的关键。

相似性统计量一般使用距离系数和相似系数进行计算。距离系数是把样品看成多维空间的点,用点间的距离来表示研究对象的紧密关系,距离越小,表明关系越密切。相似系数值表明样本和变量间的相似程度。

(1)距离系数

常采用欧几里得绝对距离,其中i样品与j样品距离dij

区域地下水功能可持续性评价理论与方法研究

dij越小,表示i,j样品越相似。

(2)相似系数

常见的相似系数有夹角余弦和相关系数,计算公式为

1)夹角余弦

区域地下水功能可持续性评价理论与方法研究

在式(4-20)中:-1≤cosθij≤1。

2)相关系数

区域地下水功能可持续性评价理论与方法研究

式中:dij为i样品与j样品的欧几里得距离;cosθij为i样品与j样品的相似系数;rij为i样品与j样品的相关系数;xik为i样品第k个因子的实测值或标准化值;xjk为j样品第k个因子的实测值或标准化值;

为i样品第k个因子的均值,

为j样品第k个因子的均值,

;n为样品的数目;k为因子(变量)数。

3.聚类

在选定相似性统计量之后,根据计算结果构成距离或相似性系数矩阵(n×n),然后通过一定的方法把n个样品组合成不同等级的分类单位,对类进行并类,即将最相似的样品归为一组,然后,把次相似的样品归为分类级别较高的组。聚类主要有直接聚类法、距离聚类法(最短距离聚类法、最远距离聚类法)。

(1)直接聚类法

直接聚类法,是根据距离或相似系数矩阵的结构一次并类得到结果,是一种简便的聚类方法。它首先把各个分类对象单独视为一类,然后根据距离最小或相似系数最大的原则,依次选出一对分类对象,并成新类。如果一对分类对象正好属于已归的两类,则把这两类并为一类。每一次归并,都划去该对象所在的列与列序相同的行。经过n-1次把全部分类对象归为一类,最后根据归并的先后顺序作出聚类分析谱系图。

(2)距离聚类法

距离聚类法包括最短距离聚类法和最远距离聚类法。最短距离聚类法具有空间压缩性,而最远距离聚类法具有空间扩张性。这两种聚类方法关于类之间的距离计算可以用一个统一的公式表示:

区域地下水功能可持续性评价理论与方法研究

当γ=-0.5时,式(4-22)计算类之间的距离最短;当γ=0.5时,式(4-22)计算类之间的距离最远。

最短、最远距离法,是在原来的n×n距离矩阵的非对角元素中找出dpq=min(dij)或dpq=max(dij),把分类对象Gp和Gq归并为一新类Gr,然后按计算公式:

dpq=min(dpk,dqk)(k≠ p,q) (4-23)

dpq=max(dpk,dqk)(k≠ p,q) (4-24)

计算原来各类与新类之间的距离,这样就得到一个新的(n-1)阶的距离矩阵;再从新的距离矩阵中选出最小或最大的dij,把Gi和Gj归并成新类;再计算各类与新类的距离,直至各分类对象被归为一类为止。最后综合整个聚类过程,作出最短距离或最远距离聚类谱系图(图4-1)。

图4-1 地下水质量评价的聚类谱系图

(二)模糊聚类法

模糊聚类法是普通聚类方法的一种拓展,它是在聚类方法中引入模糊概念形成的。该方法评价地下水质量的主要步骤,包括数据标准化、标定和聚类3个方面(付雁鹏等,1987)。

1.数据标准化

在进行聚类过程中,由于所研究的各个变量绝对值不一样,所以直接使用原始数据进行计算就会突出绝对值大的变量,而降低绝对值小的变量作用,特别是在进行模糊聚类分析中,模糊运算要求必须将数据压缩在[0,1]之间。因此,模糊聚类计算的首要工作是解决数据标准化问题。数据标准化的方法见系统聚类分析法。

2.标定与聚类

所谓标定就是计算出被分类对象间的相似系数rij,从而确定论域集U上的模糊相似关系Rij。相似系数的求取,与系统聚类分析法相同。

聚类就是在已建立的模糊关系矩阵Rij上,给出不同的置信水平λ(λ∈[0,1])进行截取,进而得到不同的分类。

聚类方法较多,主要有基于模糊等价关系基础上的聚类与基于最大树的聚类。

(1)模糊等价关系方法

所谓模糊等价关系,是指具有自反性(rii=1)、对称性(rij=rji)与传递性(R·R⊆R)的模糊关系。

基于模糊等价关系的模糊聚类分析方法的基本思想是:由于模糊等价关系R是论域集U与自己的直积U×U上的一个模糊子集,因此可以对R进行分解,当用λ-水平对R作截集时,截得的U×U的普通子集Rλ就是U上的一个普通等价关系,也就是得到了关于U中被分类对象元素的一种。当λ由1下降到0时,所得的分类由细变粗,逐渐归并,从而形成一个动态聚类谱系图(徐建华,1994)。此类分析方法的具体步骤如下。

第一步:模糊相似关系的建立,即计算各分类对象之间相似性统计量。

第二步:将模糊相似关系R改造为模糊等价关系R′。模糊等价关系要求满足自反性、对称性与传递性。一般而言,模糊相似关系满足自反性和对称性,但不满足传递性。因此,需要采用传递闭合的性质将模糊相似关系改造为模糊等价关系。改造的方法是将相似关系R自乘,即

R2=R·R

R4=R2·R2

这样计算下去,直到:R2k=Rk·Rk=Rk,则R′=Rk便是一个模糊等价关系。

第三步:在不同的截集水平下进行聚类。

(2)最大树聚类方法

基于最大树的模糊聚类分析方法的基本思路是:最大树是一个不包含回路的连通图(图4-2);选取λ水平对树枝进行截取,砍去权重低于λ 的枝,形成几个孤立的子树,每一棵子树就是一个类的集合。此类分析方法的具体步骤如下。

图4-2 最大聚类支撑树图

第一步:计算分类对象之间的模糊相似性统计量rij,构建最大树。

以所有被分类的对象为顶点,当两点间rij不等于0时,两点间可以用树干连接,这种连接是按rij从大到小的顺序依次进行的,从而构成最大树。

第二步:由最大树进行聚类分析。

选择某一λ值作截集,将树中小于λ值的树干砍断,使相连的结点构成一类,即子树,当λ由1到0时,所得到的分类由细变粗,各结点所代表的分类对象逐渐归并,从而形成一个动态聚类谱系图。

在聚类方法中,模糊聚类法比普通聚类法有较大的突破,简化了运算过程,使聚类法更易于掌握。

(三)灰色聚类法

灰色聚类是根据不同聚类指标所拥有的白化数,按几个灰类将聚类对象进行归纳,以判断该聚类对象属于哪一类。

灰色聚类应用于地下水水质评价中,是把所考虑的水质分析点作为聚类对象,用i表示(i=1,2,…,n);把影响水质的主要因素作为聚类指标,用j表示(j=1,2,…,m),把水质级别作为聚类灰数(灰类),用k表示(k=1,2,3)即一级、二级、三级3个灰类(罗定贵等,1995)。

灰色聚类的主要步骤:确定聚类白化数、确定各灰色白化函数fjk、求标定聚类权重ηjk、求聚类系数和按最大原则确定聚类对象分类。

1.确定聚类白化数

当各灰类白化数在数量上相差悬殊时,为保证各指标间的可比性与等效性,必须进行白化数的无量纲化处理。即给出第i个聚类对象中第j个聚类指标所拥有的白化数,i=1,2,…,n;j=1,2,…,m。

2.确定各灰色白化函数

建立满足各指标、级别区间为最大白化函数值(等于1),偏离此区间愈远,白化函数愈小(趋于0)的功效函数fij(x)。根据监测值Cki,可在图上(图4-3)解析出相应的白化函数值fjk(Cik),j=1,2,…,m;k=1,2,3。

3.求标定聚类权重

根据式(4-25),计算得出聚类权重ηjk的矩阵(n×m)。

区域地下水功能可持续性评价理论与方法研究

式中:ηjk为第j个指标对第k个灰类的权重;λjk为白化函数的阈值(根据标准浓度而定)。

图4-3 白化函数图

注:图4-3白化函数f(x)∈[0,1],具有下述特点:①平顶部分,表示该量的最佳程度。这部分的值为最佳值,即系数(权)为1,f(x)=max=1(峰值),x∈[x2,x3]。②白化函数是单调变化的,左边部分f(x)=L(x),单调增,x∈(x1,x2],称为白化的左支函数;右边部分f(x)=R(x),单调减,x∈[x3,x4),称为白化的右支函数。③白化函数左右支函数对称。④白化函数,为了简便,一般是直线。⑤白化函数的起点和终点,一般来说是人为凭经验确定。

4.求聚类系数

σik=∑fjk(dij)ηjk (4-26)

式中:σik为第i个聚类对象属于第k个灰类的系数,i=1,2,…,n;k=1,2,3。

5.按最大原则确定聚类对象分类

由σik构造聚类向量矩阵,行向量最大者,确定k样品属于j级对应的级别。

用灰色聚类方法进行地下水水质评价,能最大限度地避免因人为因素而造成的“失真、失效”现象。

聚类方法计算相对复杂,但是计算结果与地下水质量标准级别对应性明显,能够较全面反映地下水质量状况,也是较高层次定量研究地下水质量的重要方法。

㈡ (21)聚类分析基础知识

所谓聚类分析,就是按照个体的特征将他们分类,并且在于让同一个类别内的个体之间具有较高的相似度,让不同类别之间具有较大的差异性。这样,研究人员就能根据不同类别的特征有针对性的进行分析,并制定出适用于不同类别的解决方案。

聚类分析主要应用在市场细、用户细分等领域。

如何将个体划分成不同的类别?

为了合理的进行聚类,需要采用适当的指标来衡量研究对象之间的联系紧密程度,常用的指标有“距离”和“相似系数”。假设将研究对象采用点表示,聚类分析时,将“距离”小的点或者“相关系数”较大的点归为一类,将“距离”大的点或“相关系数”小的点归为一类。

聚类分析的特点?

1)聚类结果是未知的。不同的聚类方法可能得到不同的分类结果,相同的聚类方法但是所分析的变量不同,也会得到不同的聚类结果。

2)对于聚类结果的合理性判断比较主观。只要类别内的相似性和类别间的差异性都能得到合理的解释和判断,就认识聚类结果是可行的。

常见应用场景?

零售研究中,刻画不同的用户或消费者生活形态以及特征;互联网中,通过用户浏览、消费行为来总结用户特征;金融研究中,根据用户金融行为和资产状况对用户进行分类;城市规划中,根据区域特征对城市分类......

聚类分析的步骤:

1)确定需要参加聚类分析的变量。即使用那些变量来进行分类。

2)对数据进行标准化处理。单位、数量级等

3)选择聚类方法和类别数目。即用什么聚类方法,分成几类。

4)分析聚类结果。

为什么要对数据进行标准化处理?

因为有事各个变量之间的变量值的数量级别差异较大,或者单位也不一样。例如一个是元,一个是万元,再或者数量级别差距太大都无法进行比较或者计算“距离”和“相似系数”等指标。只有通过标准化处理,消除变量间的量纲关系的影响,在统一标准下才能够进行比较或者计算“距离”和“相似系数”等指标。

聚类方法的分类

聚类方法主要有三种:

1)快速聚类:也称K均值聚类,他是按照一定的方法,选取一批聚类中心点,让个案向最近的聚类中心点聚集形成初始分类,然后按照最近距离原则调整不合理的分类,直到分类合理为止。

2)系统聚类:也称层次聚类,首先将参与聚类的个案(或变量)各视为一类,然后根据两个类别之间的距离或者相似性逐步合并,直到所有个案(或变量)合并为一个大类为止。

3)二阶聚类:也称两步聚类,这是随着人工智能的发展而发展起来的一种智能聚类方法。分成两个步骤:第一步骤是预聚类,就是根据定义的最大类别数对个案进行初步归类;第二步骤是正式聚类,就是对第一步骤得到的初步聚类进行在聚类并确定最终聚类结果,并且在这一步中,会根据一定的统计标准确定聚类的类别数。

㈢ 常用的聚类方法有哪几种

聚类分析的算法可以分为划分法、层次法、基于密度的方法、基于网格的方法、基于模型的方法。

1、划分法,给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,K<N。

2、层次法,这种方法对给定的数据集进行层次似的分解,直到某种条件满足为止。

3、基于密度的方法,基于密度的方法与其它方法的一个根本区别是:它不是基于各种各样的距离的,而是基于密度的。这样就能克服基于距离的算法只能发现“类圆形”的聚类的缺点。

4、图论聚类方法解决的第一步是建立与问题相适应的图,图的节点对应于被分析数据的最小单元,图的边(或弧)对应于最小处理单元数据之间的相似性度量。

5、基于网格的方法,这种方法首先将数据空间划分成为有限个单元的网格结构,所有的处理都是以单个的单元为对象的。

6、基于模型的方法,基于模型的方法给每一个聚类假定一个模型,然后去寻找能够很好的满足这个模型的数据集。

(3)聚类分析数据变换的方法及特点扩展阅读:

在商业上,聚类可以帮助市场分析人员从消费者数据库中区分出不同的消费群体来,并且概括出每一类消费者的消费模式或者说习惯。

它作为数据挖掘中的一个模块,可以作为一个单独的工具以发现数据库中分布的一些深层的信息,并且概括出每一类的特点,或者把注意力放在某一个特定的类上以作进一步的分析;并且,聚类分析也可以作为数据挖掘算法中其他分析算法的一个预处理步骤。

许多聚类算法在小于 200 个数据对象的小数据集合上工作得很好;但是,一个大规模数据库可能包含几百万个对象,在这样的大数据集合样本上进行聚类可能会导致有偏的结果。

许多聚类算法在聚类分析中要求用户输入一定的参数,例如希望产生的簇的数目。聚类结果对于输入参数十分敏感。参数通常很难确定,特别是对于包含高维对象的数据集来说。这样不仅加重了用户的负担,也使得聚类的质量难以控制。

㈣ 16种常用的数据分析方法-聚类分析

聚类(Clustering)就是一种寻找数据之间内在结构的技术。聚类把全体数据实例组织成一些相似组,而这些相似组被称作簇。处于相同簇中的数据实例彼此相同,处于不同簇中的实例彼此不同。











聚类分析定义









聚类分析是根据在数据中发现的描述对象及其关系的信息,将数据对象分组。目的是,组内的对象相互之间是相似的(相关的),而不同组中的对象是不同的(不相关的)。组内相似性越大,组间差距越大,说明聚类效果越好。


聚类效果的好坏依赖于两个因素:1.衡量距离的方法(distance measurement) 2.聚类算法(algorithm)

 
















聚类分析常见算法









K-均值聚类也称为快速聚类法,在最小化误差函数的基础上将数据划分为预定的类数K。该算法原理简单并便于处理大量数据。


K-均值算法对孤立点的敏感性,K-中心点算法不采用簇中对象的平均值作为簇中心,而选用簇中离平均值最近的对象作为簇中心。


也称为层次聚类,分类的单位由高到低呈树形结构,且所处的位置越低,其所包含的对象就越少,但这些对象间的共同特征越多。该聚类方法只适合在小数据量的时候使用,数据量大的时候速度会非常慢。

 
















案例









有20种12盎司啤酒成分和价格的数据,变量包括啤酒名称、热量、钠含量、酒精含量、价格。


 

问题一:选择那些变量进行聚类?——采用“R 型聚类”

 

现在我们有4个变量用来对啤酒分类,是否有必要将4个变量都纳入作为分类变量呢?热量、钠含量、酒精含量这3个指标是要通过化验员的辛苦努力来测定,而且还有花费不少成本。


所以,有必要对4个变量进行降维处理,这里采用spss R型聚类(变量聚类),对4个变量进行降维处理。输出“相似性矩阵”有助于我们理解降维的过程。



4个分类变量各自不同,这一次我们先用相似性来测度,度量标准选用pearson系数,聚类方法选最远元素,此时,涉及到相关,4个变量可不用标准化处理,将来的相似性矩阵里的数字为相关系数。若果有某两个变量的相关系数接近1或-1,说明两个变量可互相替代。



只输出“树状图”就可以了,从proximity matrix表中可以看出热量和酒精含量两个变量相关系数0.903,最大,二者选其一即可,没有必要都作为聚类变量,导致成本增加。


至于热量和酒精含量选择哪一个作为典型指标来代替原来的两个变量,可以根据专业知识或测定的难易程度决定。(与因子分析不同,是完全踢掉其中一个变量以达到降维的目的。)这里选用酒精含量,至此,确定出用于聚类的变量为:酒精含量,钠含量,价格。

        


问题二:20 中啤酒能分为几类?—— 采用“Q 型聚类”

 

现在开始对20中啤酒进行聚类。开始不确定应该分为几类,暂时用一个3-5类范围来试探。Q型聚类要求量纲相同,所以我们需要对数据标准化,这一回用欧式距离平方进行测度。



主要通过树状图和冰柱图来理解类别。最终是分为4类还是3类,这是个复杂的过程,需要专业知识和最初的目的来识别。


这里试着确定分为4类。选择“保存”,则在数据区域内会自动生成聚类结果。




问题三:用于聚类的变量对聚类过程、结果又贡献么,有用么?——采用“单因素方差分析”

 

聚类分析除了对类别的确定需讨论外,还有一个比较关键的问题就是分类变量到底对聚类有没有作用有没有贡献,如果有个别变量对分类没有作用的话,应该剔除。


这个过程一般用单因素方差分析来判断。注意此时,因子变量选择聚为4类的结果,而将三个聚类变量作为因变量处理。方差分析结果显示,三个聚类变量sig值均极显着,我们用于分类的3个变量对分类有作用,可以使用,作为聚类变量是比较合理的。




 

问题四:聚类结果的解释?——采用”均值比较描述统计“


聚类分析最后一步,也是最为困难的就是对分出的各类进行定义解释,描述各类的特征,即各类别特征描述。这需要专业知识作为基础并结合分析目的才能得出。


我们可以采用spss的means均值比较过程,或者excel的透视表功能对各类的各个指标进行描述。其中,report报表用于描述聚类结果。对各类指标的比较来初步定义类别,主要根据专业知识来判定。这里到此为止。



以上过程涉及到spss层次聚类中的Q型聚类和R型聚类,单因素方差分析,means过程等,是一个很不错的多种分析方法联合使用的案例。

 
















聚类分析的应用









聚类分析是细分市场的有效工具,被用来发现不同的客户群,并且它通过对不同的客户群的特征的刻画,被用于研究消费者行为,寻找新的潜在市场。

 



聚类分析被用来对动植物和基因进行分类,以获取对种群固有结构的认识。

 



聚类分析可以通过平均消费来鉴定汽车保险单持有者的分组,同时可以根据住宅类型、价值、地理位置来鉴定城市的房产分组。

 



聚类分析被用来在网上进行文档归类。

 



聚类分析通过分组聚类出具有相似浏览行为的客户,并分析客户的共同特征,从而帮助电子商务企业了解自己的客户,向客户提供更合适的服务。

 


㈤ 聚类分析

化探工作中常常要研究元素和样品分类问题。聚类分析则提供了一些数量化的衡量元素或样品相似程度的指示,利用这些指标可将元素样品按其相似程度的大小划分为不同的类,从而揭示元素或样品之间的本质联系,这有助于研究元素共生组合关系和对岩体异常等的分类评价。

根据分类对象不同,聚类分析分为R型聚类分析(对元素进行分类),Q型聚类分析(对样品进行分类)。聚类分析一般采用逐次联结法,具体做法如下。

1.转换对数

常将实测数据先转换为对数,因为微量元素多属对数正态分布,而且数据过于离散。

2.数据均匀化

数据均匀化化的目的是将大小悬殊的数据化为同一度量的水平上。均匀化的方法常用的有:

(1)标准化

用于R型聚类分析,计算公式:

地球化学找矿

式中:zij为标准化数据;xij为原始数据(对数值);xi为 i个变量的平均值(对数平均值),

为i个变量的标准离差,σi

;i为变量数(i=1,2,3,…,m);j为样品数(j=1,2,3,…,n)。

(2)正规化

用于Q型聚类分析,计算公式:

地球化学找矿

式中:wij为正规化数据;xij为原始数据(对数值);xi(max)为i个变量的最大值(对数值);xi(min)为i个变量的最小值(对数值);i 为变量数(i =1,2,3,…,m);j 为样品数(j=1,2,3,…,n)。

(3)计算相似性统计量

1)相关系数r

用于R型聚分析,计算公式(任何两元素):

地球化学找矿

数据标准化后:

地球化学找矿

-1≤r≤1,|r|愈大,元素愈相似。

2)相似性系数

用于Q型聚类分析,计算公式(任何二样品):

地球化学找矿

-1≤cosθ≤1,|cosθ|愈大,元素愈相似。

3)距离系数

用于Q型聚类分析,计算公式(对于任何两样品)

地球化学找矿

对于正规化数据0≤d≤1,d值越小样品越相似。将计算出的相似性统计量排列成矩阵。

(4)根据相似性统计量进行分类

1)选出相似程度最大(即相关系数、相似性系数最大,距离系数最小)的一对元素或样品联结成一类,填入分类表(表6-4),联结后的元素或样品组成一个新变量(新样品)替换序号较小的变量(样品),去掉序号较大的变量(样品)。

2)将联结成一类的元素或样品均匀化数据加权平均,替换序号较小的一行作为新变量(新样品)的数据,去掉序号较大的一行数据,其余各行不变。得到比原来少一个变量或样品的均匀化数据表。

表6-4 分类统计表

加权平均计算公式:

如第一、二两个元素联结后新变量的标准化数据为,则:

地球化学找矿

N1和N2分别为权,未组合的数据权为1,组合一次权增加1。

3)根据新变量(新样品)的数据,计算新变量(新样品)与其余变量(样品)间的相似性统计量,其余不变,列出新的矩阵。

4)重复上述1),2),3)各步骤,即挑选相似程度最大的变量(或样品)联结归类;加权平均合并数据;计算新变量(新样品)与其他变量(样品)间的相似性统计量,刷新原矩阵,直至全部联结完毕为止。

5)制作谱系图,见图6-3。

图6-3 谱系图(示意)

3.计算实例

某地一批超基性岩样品,经分析 Ni,Co,Cu,Cr,S,As含量如表6-5。

表6-5 某地超基性样品Ni,Co,Cu,Cr,S,As 含量

(1)用R型聚类分析对元素进行分类

1)将原始数据转换为对数,并计算各元素对数值的平均值和标准离差,其结果见表6-6。

2)将各样品中各元素含量对数值进行标准化。

3)按照数据标准化公式:

地球化学找矿

地球化学找矿

于是可得标准化数据表6-7。

表6-7 标准化数据

4)计算相关系数,列出相关系数矩阵R(0),按照相关系数计算公式:

地球化学找矿

于是得相关矩阵R(0)

地球化学找矿

5)将R(0)中相关系数最大的Co,Cu联结成一类,记为Co′填入分类统计表中,并计算Co′的数据。

按照加权平均计算公式:

地球化学找矿

于是得表6-8。

表6-8 由R(0)得到的Co′值

6)计算新变量Co′与剩余的变量的相关系数,列出新相关矩阵R(1)

相关系数计算公式同前(以下同),于是得:

地球化学找矿

7)将R(1)中相关系数最大的Ni,Co′联结成一类,记为Ni′填入分类统计表中,并计算Ni′的数据。

Ni′的数据仍按前加权平均的公式计算(以下同),于是得表6-9。

表6-9 由Co′重新计算的Ni′值

8)计算新变量Ni′与剩余的变量的相关系数,列出新相关矩阵R(2)

于是得:

地球化学找矿

9)将R(2)中相关系数最大的S,As联结成一类,记为填入分类统计表中,并计算S′的数据(表6-10)。

表6-10 S′计算结果

10)计算新变量S′与剩余变量的相关系数,列出刷新的相关矩阵R(3)

地球化学找矿

11)将R(3)中相关系数最大的 Ni′与 S′联结成一类,记为 Ni″,填入分类统计表中(表6-11)。

表6-11 Ni″计算结果

12)计算新变量Ni″与剩余变量的相关系数,列出刷新的相关矩R(4)

13)最后将Ni″与Cr联结起来,记入分类统计表6-12。

表6-12 分类统计表

14)制作谱系图(图6-4)。

图6-4 谱系图

从上述谱系图可见,在相关系数0.2~0.5的相似水平上,可将述六个元素分为两类:一类是 Cr(亲氧元素);另一类是 Co,Cu,Ni,As(亲硫元素)。在相关系数0.6 左右可将亲硫元素分为两组,一组是S,As(阴离子);一组是Co,Cu,Ni(阳离子),且Co,Cu相关关系更密切。这样R型聚类分析清楚地显示出这些元素在超基性岩石的相互关系。

(2)用Q型聚类分析对样品进行分类

仍以上述超基岩样品分析结果为例。

对样品分类常用距离系数。由于距离系数是对直角坐标系而言,即要求变量要互不相关。故可先用R型聚类分析(式R型因子分析)选出互相独立的变量(在用R型聚类分析时,通常取相关系数绝对值小的变量),然后以距离系数对样品进行分类。

上例R型聚类分析结果,在R=0.6 水平左右可将变量分为三组,即Ni′(Ni,Co,Cu);S′(S,As);Cr,现以这三组为变量对样品进行分类。

1)将变量数据(对数值)进行合并,得出新的数据表。合并的办法是取该组变量的平均值,于是得表6-13。

表6-13 对变量数据合并后的新的数据

2)将数据正规化。按正规化的公式:

地球化学找矿

于是得表6-14。

表6-14 正规化后的数据表

3)计算距离系数djk,列出初始距离系数矩阵D(0)

按距离系数公式:

地球化学找矿

于是得:

地球化学找矿

4)将D(0)中距离系数值最小的(5),(6)样品联结成一类,记为(5′)填入分类统计表中,并计算(5′)的数据。

按照加权平均计算公式:

地球化学找矿

于是得表6-15。

表6-15 (5′)的数据表

5)计算(5′)与样品的距离系数,列出刷新距离系数矩阵D(1),于是得:

地球化学找矿

6)将D(1)中距离系数最大的(2),(5′)联结成一类,记为(2′),填入分类统计表中,并计算(2′)的数据。于是得表6-16。

表6-16 (2′)的数据表

7)计算(2′)与剩余样品的距离系数,列出刷新的距离系数矩阵D(2),于是得:

地球化学找矿

8)将D(2)中距离系数最小的(1),(4)联结成一类,记为(1′),填入分类统计表中,并计算(1′)的数据。于是得表6-17。

表6-17 (1′)的数据表

9)计算(1′)与剩余样品的距离系数,列出刷新的距离系数矩阵D(3),于是得:

地球化学找矿

10)将D(3)中距离系数最小的(1′),(2′),联结成一类,记为(1″),填入分类统计表中,并计算(1″)的数据。于是得表6-18。

表6-18 (1″)的数据表

11)计算(1″)与剩余样品的距离系数,列出新的距离系数矩阵D(4),于是得:

地球化学找矿

12)最后将(1″),(3)联结成一类,填入分类统计表6-19。

表6-19 分类统计表

13)制作谱系图(图6-5)。

图6-5 谱系图

从谱系图上可得:在距离系数0.35~0.5水平上,可将数个样品分成三类;一类是矿化的蛇纹岩(1)及(4);另一类是无矿化的蛇纹岩(2)及滑镁岩(5),(6);样品(3)为单独一类,它是无矿化的蛇纹岩。因此,通过Q型聚类分析很好地将该地含矿岩体和不含矿岩体区分开来。至于样品(3)单独开,还可进一步研究它与其他无矿岩体的差异。

这里需要特别指出的是,运用回归分析、判别分析、聚类分析都是在特定的地质条件下得出的统计规律,因此,在利用这些规律对未知进行判断时,一定要注意地质条件的相似性,切不可把某一地质条件下导出的规律,生搬硬套地用于解决不同地质条件下的问题。

㈥ 聚类分析方法有哪些

问题一:什么是聚类分析?聚类算法有哪几种 聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法。聚类分析起源于
分类学,在古老的分类学中,人们主要依靠经验和专业知识来实现分类,很少利用数学工具进行
定量的分类。随着人类科学技术的发展,对分类的要求越来越高,以致有时仅凭经验和专业知识
难以确切地进行分类,于是人们逐渐地把数学工具引用到了分类学中,形成了数值分类学,之后又
将多元分析的技术引入到数值分类学形成了聚类分析。
聚类分析内容非常丰富,有系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论
聚类法、聚类预报法等。
聚类分析计算方法主要有如下几种:分裂法(partitioning methods):层次法(hierarchical
methods):基于密度的方法(density-based methods): 基于网格的方法(grid-based
methods): 基于模型的方法(model-based methods)。

问题二:聚类分析方法有什么好处 5分 聚类分析:将个体(样品)或者对象(变量)按相似程度(距离远近)划分类别,使得同一类中的元素之间的相似性比其他类的元素的相似性更强。目的在于使类间元素的同质性最大化和类与类间元素的异质性最大化。其主要依据是聚到同一个数据集中的样本应该彼此相似,而属于不同组的样本应该足够不相似。
常用聚类方法:系统聚类法,K-均值法,模糊聚类法,有序样品的聚类,分解法,加入法。
注意事项:
1. 系统聚类法可对变量或者记录进行分类,K-均值法只能对记录进行分类;
2. K-均值法要求分析人员事先知道样品分为多少类;
3. 对变量的多元正态性,方差齐性等要求较高。
应用领域:细分市场,消费行为划分,设计抽样方案等
优点:聚类分析模型的优点就是直观,结论形式简明。
缺点:在样本量较大时,要获得聚类结论有一定困难。由于相似系数是根据被试的反映来建立反映珐试间内在联系的指标,而实践中有时尽管从被试反映所得出的数据中发现他们之间有紧密的关系,但事物之间却无任何内在联系,此时,如果根据距离或相似系数得出聚类分析的结果,显然是不适当的,但是,聚类分析模型本身却无法识别这类错误。

问题三:什么是聚类分析? 聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法。聚类分析起源于
分类学,在古老的分类学中,人们主要依靠经验和专业知识来实现分类,很少利用数学工具进行
定量的分类。随着人类科学技术的发展,对分类的要求越来越高,以致有时仅凭经验和专业知识
难以确切地进行分类,于是人们逐渐地把数学工具引用到了分类学中,形成了数值分类学,之后又
将多元分析的技术引入到数值分类学形成了聚类分析。
聚类分析内容非常丰富,有系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论
聚类法、聚类预报法等。
聚类分析计算方法主要有如下几种:分裂法(partitioning methods):层次法(hierarchical
methods):基于密度的方法(density-based methods): 基于网格的方法(grid-based
methods): 基于模型的方法(model-based methods)。

问题四:常用的聚类方法有哪几种?? 1.k-mean聚类分析 适用于样本聚类;
2.分层聚类 适用于对变量聚类;
3.两步搐类 适用于分类变量和连续变量聚类;
4.基于密度的聚类算法;
5.基于网络的聚类;
6.机器学习中的聚类算法;
前3种,可用spss简单操作实现;

问题五:spss聚类分析方法有哪些 首先,k-means你每次算的结果都会不一样,因为结果跟初始选取的k个点有关

问题六:聚类分析方法是什么? 5分 聚类分析:将个体(样品)或者对象(变量)按相似程度(距离远近)划分类别,使得同一类中的元素之间的相似性比其他类的元素的相似性更强。目的在于使类间元素的同质性最大化和类与类间元素的异质性最大化。

问题七:聚类分析的算法 聚类分析是数据挖掘中的一个很活跃的研究领域,并提出了许多聚类算法。传统的聚类算法可以被分为五类:划分方法、层次方法、基于密度方法、基于网格方法和基于模型方法。1 划分方法(PAM:PArtitioning method) 首先创建k个划分,k为要创建的划分个数;然后利用一个循环定位技术通过将对象从一个划分移到另一个划分来帮助改善划分质量。典型的划分方法包括:k-means,k-medoids,CLARA(Clustering LARge Application),CLARANS(Clustering Large Application based upon RANdomized Search).FCM2 层次方法(hierarchical method) 创建一个层次以分解给定的数据集。该方法可以分为自上而下(分解)和自下而上(合并)两种操作方式。为弥补分解与合并的不足,层次合并经常要与其它聚类方法相结合,如循环定位。典型的这类方法包括:BIRCH(Balanced Iterative Recing and Clustering using Hierarchies) 方法,它首先利用树的结构对对象集进行划分;然后再利用其它聚类方法对这些聚类进行优化。CURE(Clustering Using REprisentatives) 方法,它利用固定数目代表对象来表示相应聚类;然后对各聚类按照指定量(向聚类中心)进行收缩。ROCK方法,它利用聚类间的连接进行聚类合并。CHEMALOEN方法,它则是在层次聚类时构造动态模型。3 基于密度的方法,根据密度完成对象的聚类。它根据对象周围的密度(如DBSCAN)不断增长聚类。典型的基于密度方法包括:DBSCAN(Densit-based Spatial Clustering of Application with Noise):该算法通过不断生长足够高密度区域来进行聚类;它能从含有噪声的空间数据库中发现任意形状的聚类。此方法将一个聚类定义为一组“密度连接”的点集。OPTICS(Ordering Points To Identify the Clustering Structure):并不明确产生一个聚类,而是为自动交互的聚类分析计算出一个增强聚类顺序。。4 基于网格的方法,首先将对象空间划分为有限个单元以构成网格结构;然后利用网格结构完成聚类。STING(STatistical INformation Grid) 就是一个利用网格单元保存的统计信息进行基于网格聚类的方法。CLIQUE(Clustering In QUEst)和Wave-Cluster 则是一个将基于网格与基于密度相结合的方法。5 基于模型的方法,它假设每个聚类的模型并发现适合相应模型的数据。典型的基于模型方法包括:统计方法COBWEB:是一个常用的且简单的增量式概念聚类方法。它的输入对象是采用符号量(属性-值)对来加以描述的。采用分类树的形式来创建一个层次聚类。CLASSIT是COBWEB的另一个版本.。它可以对连续取值属性进行增量式聚类。它为每个结点中的每个属性保存相应的连续正态分布(均值与方差);并利用一个改进的分类能力描述方法,即不象COBWEB那样计算离散属性(取值)和而是对连续属性求积分。但是CLASSIT方法也存在与COBWEB类似的问题。因此它们都不适合对大数据库进行聚类处理.传统的聚类算法已经比较成功的解决了低维数据的聚类问题。但是由于实际应用中数据的复杂性,在处理许多问题时,现有的算法经常失效,特别是对于高维数据和大型数据的......>>

问题八:主成分分析法和聚类分析法的区别

问题九:聚类分析方法具体有哪些应用?可不可以举个例子? 比如说现在要把n个产品按产品的m个指标继续聚类,因为产品可能之前的特色是不一样的。而这个时候影响产品的因素有m个,不可能一个一个的考虑,那样是分不出类来的。所以只能对产品的m个指标综合考虑,采用SPSS中的样本聚类方法,就可以直接将产品分好类。并且从分析结果还可以看出各类产品的特色分别是什么。。就是最主要的分类标准是什么。
聚类分析不仅可以用于样本聚类,还可以用于变量聚类,就是对m个指标进行聚类。因为有时指标太多,不能全部考虑,需要提取出主要因素,而往往指标之间又有很多相关联的地方,所以可以先对变量聚类,然后从每一类中选取出一个代表型的指标。这样就大大减少了指标,并且没有造成巨大的信息丢失。

阅读全文

与聚类分析数据变换的方法及特点相关的资料

热点内容
早醒的治疗方法百度知道 浏览:743
如何计算总金额的方法 浏览:525
对刀仪使用方法 浏览:388
98x299的简便计算方法 浏览:122
大圆桶的使用方法 浏览:730
小米怎么设置语音权限设置在哪里设置方法 浏览:406
检测地漏水泥方法 浏览:164
活用成词的四种方法有哪些 浏览:757
如何找自己做客观题的方法 浏览:533
全国退休工资计算方法都一样吗 浏览:128
文学意境的分类有哪些方法 浏览:658
研什么方法 浏览:744
同仁堂阿胶的食用方法 浏览:442
皮肤过敏试验有哪些方法 浏览:732
土壤项目检测方法 浏览:159
在家吃豆腐的简单方法 浏览:578
便秘有什么是方法 浏览:565
食用菌事业管理方法 浏览:87
打死结的方法图解步骤 浏览:715
java测试类中的静态方法怎么调用 浏览:162