导航:首页 > 研究方法 > 队列研究使用的统计方法

队列研究使用的统计方法

发布时间:2023-08-08 01:49:55

A. 怎么区别队列研究和RCT

rct是随机对照试验,属于实验性研究,队列研究属于观察性研究。队列研究的分组是固有的,没有人为干预。

B. 对于R×C表资料的差异性检验,其相应的检验方法是什么如何进行

医学论文中常用统计分析方法的合理选择

目前,不少医学论文中的统计分析存在较多的问题。有报道,经两位专家审稿认为可以发表的稿件中,其统计学误用率为90%-95%。为帮助广大医务工作者提高统计分析水平,本文将介绍医学论文中常用统计分析方法的选择原则及应用过程中的注意事项。 1.t 检验
t检验是英国统计学家W.S.Gosset 1908年根据t分布原理建立起来的一种假设检验方法,常用于计量资料中两个小样本均数的比较。理论上,t检验的应用条件是要求样本来自正态分布的总体,两样本均数比较时,还要求两总体方差相等。但在实际工作中,与上述条件略有偏离,只要其分布为单峰且近似正态分布,也可应用[2]。
常用的t检验有如下三类:①单个样本t检验:用于推断样本均数代表的总体均数和已知总体均数有无显着性差别。当样本例数较少(n<60)且总体标准差未知时,选用t检验;反之当样本例数较多或样本例数较少、总体标准差已知时,则可选用u检验 [3]。②配对样本t检验:适用于配对设计的两样本均数的比较,在选用时应注意两样本是否为配对设计资料。常用的配对设计资料主要有如下三种情况:两种同质受试对象分别接受两种不同的处理;同一受试对象或同一样本的两个部分,分别接受不同的处理;同一受试对象处理前后的结果比较。③两独立样本t检验:又称成组t检验,适用于完全随机设计的两样本均数的比较。与配对t检验不同的是,在进行两独立样本t检验之前,还必须对两组资料进行方差齐性检验。若为小样本且方差齐,则选用t检验;反之若方差不齐,则选用校正t检验(t’检验),或采用数据变换的方法(如取对数、开方、倒数等)使两组资料具有方差齐性后再进行t检验,或采用非参数检验[4]。此外,当两组样本例数较多(n1、n2均>50)时,这时应用t检验的计算比较繁琐,可选用u检验[5]。 2.方差分析
方差分析适用于两组以上计量资料均数的比较,其应用条件是各组资料取自正态分布的总体且各组资料具有方差齐性。因此,在应用方差分析之前,同样和成组t检验一样需要对各组资料进行正态性检验、方差齐性检验。
常用的方差分析有如下几类:①完全随机设计的方差分析:主要用于推断完全随机设计的多个样本均数所代表的总体均数之间有无显着性差别。完全随机设计是将观察对象随机分为两组或多组,每组接受一种处理,形成两个或多个样本。②随机区组设计的方差分析:
随机区组设计首先是将全部受试对象按某种或某些特性分为若干区组,然后区组内的每个研究对象接受不同的处理,通过这种设计,既可以推断处理因素又可以推断区组因素是否对试验效应产生作用。此外,由于这种设计还使每个区组内研究对象的水平尽可能地相近,减少了个体间差异对研究结果的影响,比成组设计更容易检验出处理因素间的差别。③析因设计的方差分析:将两个或两个以上处理因素的各种浓度水平进行排列组合、交叉分组的试验设计。它不仅可以检验每个因素各水平之间是否有差异,还可以检验各因素之间是否有交互作用,同时还可以找到处理因素的各种浓度水平之间的最佳组合。此外,还有正交设计、拉丁方设计等多种方差分析法,实验者在应用时可以参考相关的统计学着作。
目前,某些医学论文中有这样的情况,就是用t 检验代替方差分析对实验数据进行统计学处理,这是不可取的。t 检验只适用于推断两个小样本均数之间有无显着性差别,而采用t 检验对多组均数进行两两比较,会增加犯I 型错误的概率,即可能把本来无差别的两个总体均数判为有差别,使结论的可信度降低[6]。对多个样本均数进行比较时,正确的方法是先进行方差分析,若检验统计量有显着性意义时,再进行多个样本均数的两两(多重)比较。
3.卡方检验(χ2检验)
χ2检验是一种用途比较广泛的假设检验方法,但是在医学论文中常用于分类计数资料的假设检验,即用于两个样本率、多个样本率、样本内部构成情况的比较,样本率与总体率的比较,某现象的实际分布与其理论分布的比较。但是当样本满足正态近似条件时,如样本例数n与样本率p满足条件np与n(1— p)均大于5,则可以计算假设检验统计量u值来进行判断。
常用的χ2
检验分为如下几类:①2×2表χ2
检验:适用于两个样本率或构成比的比较,在应用时,当整个试验的样本例数n≥40且某个理论频数1≤T<5时,需对χ2
值进行连续性校正。因为T值太小,会导致χ2
值增大,易出现假阳性结论。此外,若样本例数n<40,或有某个T值<1,此时即使采用校正公式计算的χ2
值也有偏差,需要用2×2表χ2
检验的确切概率检验法(Fisher确切检验法)。②配对资料χ2检验:适用于配对设计的两个样本率或构成比的比较,即通过单一样本的数据推断两种处理结果有无显着性差别。在应用时,如果甲处理结果为阳性而乙处理结果为阴性的样本例数n1与甲处理结果为阴性而乙处理结果为阳性的样本例数n2之和<40,需要对计算的χ2
值进行校正。③R×C表χ2
检验:适用于多个样本率或构成比的比较。在R×C表χ2检验中,若检验统计量有显着性意义时,还需要对多个样本率或构成比进行两两比较,即分割R×C表,使之成为非独立的四格表,并对每两个率之间有无显着性差别作出结论。
2×2表资料在应用时可分为如下几种类型:横断面研究设计的2×2表资料、队列研究设计的2×2表资料、病例-对照研究设计的2×2表资料、配对研究设计的2×2表资料。研究者应注意不同类型的2×2表资料的统计分析方法略有差别,比如在分析队列研究设计的2×2表资料时,如果用χ2公式计算得到P<0.05,研究者则应再计算相对危险度(RR)并检验总体RR与1之间的差异是否具有统计学意义。
此外,在进行R×C表χ2检验时,还有如下两个主要的注意事项:首先,T值最好不要<5,若有1/5的T值<5,χ2检验结论是不可靠的,解决的办法有三种:增大样本量;删去T值太小的行和列;将T值太小的行或列与性质相近的邻行或邻列的实际频数合并。
其次,不同类型的R×C表资料选择的统计分析方法是不一样。①双向无序的R×C表资料:可以选用一般的χ2公式计算。②单向有序的R×C表资料:如果是原因变量为有序变量的单向有序R×C表资料,可以将其视为双向无序的R×C表资料而选用一般的χ2检验公式计算,但如果是结果变量为有序变量的单向有序R×C表资料,选用的统计分析方法有秩和检验、Radit分析和有序变量的logistic回归分析等。③双向有序且属性不同的R×C表资料:对于这类资料采用的统计分析方法不能一概而论,应根据研究者的分析目而合理选择。如果研究者只关心原因变量与结果变量之间的差异是否具有统计学意义时,此时,原因变量的有序性就显得无关紧要了,可将其视为结果变量为有序变量的单向有序R×C表资料进行分析。如果研究者希望考察原因变量与结果变量之间是否存在线性相关关系,此时需要选用处理定性资料的相关分析方法如Spearman秩相关分析方法等。如果两个有序变量之间的相关关系具有统计学意义,研究者希望进一步了解这两个有序变量之间的线性关系,此时宜选用线性趋势检验。如果研究者希望考察列联表中各行上的频数分布是否相同,此时宜选用一般的χ
因此,对于适用参数检验的资料,最好还是用参数检验。
秩和检验是最常用的非参数检验,它包括如下几类:①配对资料的符号秩和检验
(Wilcoxon配对法):是配对设计的非参数检验。当n≤25时,可通过秩和检验对实验资料进行分析;当n>25时,样本例数超出T界值表的范围,可按近似正态分布用u检验对实验资料进行分析。②两样本比较的秩和检验(Wilcoxon Mann-Whitney检验):适用于比较两样本分别代表的总体分布位置有无差异。如果样本甲的例数为n1,样本乙的例数为n2,且n1<n2;当n1≤10、n2—n1≤10时,可通过两样本比较的秩和检验对实验资料进行分析;当n1、n2超出T界值表的范围时,同样可按近似正态分布用u检验对实验资料进行分析。③多个样本比较的秩和检验(Wilcoxon Kruskal-Wallis检验):适用于比较各样本分别代表的总体的位置有无差别,它相当于单因素方差分析的非参数检验,计算方法主要有直接法和频数表法等。此外,在进行上述3类秩和检验(前两类秩和检验实际上已经被u检验替代)时,如果相同秩次较多,则需要对计算的检验统计量进行校正。
公式计算。④双向有序且属性相同的R×C表资料:这类资料实际上就是配对设计2×2表资料的延伸,在分析这类资料时,实验者的目的主要是研究两种处理方法检测结果之间是否具有一致性,因此常用的统计分析方法为一致性检验或Kappa检验。
4. 非参数检验
非参数检验可不考虑总体的参数、分布而对总体的分布或分布位置进行检验。它通常适用于下述资料[2]:①总体分布为偏态或分布形式未知的计量资料(尤其样本例数n<30时);②等级资料;③个别数据偏大或数据的某一端无确定的数值;④各组离散程度相差悬殊,即各总体方差不齐。该方法具有适应性强等优点,但同时也损失了部分信息,使得检验效率降低。即当资料服从正态分布时,选用非参数检验法代替参数检验法会增大犯Ⅱ类错误的概率。

C. 【原创干货】一文搞清楚病例对照研究和队列研究!

如果你是初到临床,首先接触到的可能不是脱离本科 蓝色生死恋 的快感,而是无限循环每天早上的查房交班,开药,治疗等等。

除此之外,你的老板还可能某天说:“诶,小王,来临床这么久了,除了临床工作要做,科研也得跟上啊,院里准备联合某某医院开展一个关于**的<u style="box-sizing: border-box;">病例对照研究/队列研究</u>,我们团队里面你去试一下吧。“

话毕,满脸微笑的应了下来,心里却是疑问三连”来多久?什么研究?我要干嘛?“ ,这个夜晚又多了一个不眠的少年~~

纯属杜撰,如有雷同请看下文解决方法

病例对照研究,队列研究是在临床上常见的两种研究类型, 但是都属于观察性研究 ,是为了用统计学的方法解释临床遇见的一些问题,并且做出合理的预防,治疗,预后等等。

另外有一种研究就不得不提了,那就是大名鼎鼎的 随机对照研究(RCT)

该研究可以追溯到1926年珍妮特·莱恩·克莱彭(Janet Lane-Claypon)的乳腺癌研究,那是病例对照研究第一次得到认可。 揭示了低生育率会增加患乳腺癌的风险的发现 ,之后在里程碑似的研究:吸烟与肺癌的关系之后,病例对照研究得到了广泛的应用。

利弊如下:

关键步骤:选择适当的对照组: 病例和对照都应该来自相同的来源人群。

除此之外还有一些设计方法值得一说:

这个可能是你做病例对照研究绕不开的一个过程,这是国际公认的一个报告规范,它适用于病例对照研究,队列研究,横断面研究。

网址如下: http://www.strobe-statement.org/

步骤如下:

经过以上总结,不知道你get到点了吗?如果你觉得对你有帮助,右下角的”在看“走一波,码字不易,谢谢!

参考文献/网站:

D. 正确选择相关性分析的统计方法

转自: https://www.medsci.cn/article/show_article.do?id=55c91839569a

相关性分析主要用于:(1)判断两个或多个变量之间的统计学关联;(2)如果存在关联,进一步分析关联强度和方向。

那么,什么样的研究可以进行相关性分析呢?我们在这里列举了几个相关性研究的例子供大家参考:

确定要进行相关性分析后,对两个变量或多个变量进行相关性分析所采取的统计方法是不同的。那么,怎么判断研究变量的数量呢?

我们分别就两个变量的研究和三个及以上变量的研究进行了举例,帮助大家理解。同时,我们也对例子中变量数据类型进行了描述(如,连续变量、二分类变量、无序分类变量和有序分类变量)。

确定拟分析变量之间的相关性后,我们需要判断变量的数据类型。

变量的数据类型主要分为连续变量、二分类变量、无序分类变量和有序分类变量4类。拟分析的变量可以同属于一个数据类型,也可以分属不同的数据类型。根据这两个变量数据类型的不同,应采用的统计分析方法也不同。

连续变量是指对连续的指标测量所得到的数值,比如体重。其特点是等距区间的差异相同,例如体重在50kg-60kg之间的差异与60kg-70kg之间的差异相同。连续变量的示例如下:

有序分类变量可以有两个或者多个已排序的类别。举例来说,如果某患者的治疗结果是“痊愈”、“好转”、“不变”或者“恶化”。这就是一个有序分类变量,因为可以对四个类别进行排序。

需要注意的是,虽然我们可以对有序分类变量的类别排序,但还需要判断这种类别排序是不是等距的。例如,用各年龄段的近似中位数代表年龄类别,即24(18-30)岁、40(31-50)岁、60(51-70)岁、80(70岁以上)岁,可以将年龄视为定距变量。

但将患者的诊疗结果“痊愈”、“好转”、“无变化”或者“恶化”就不能认为是等距的,换句话说,不能认为“好转”是“无变化”的2倍;也不能认为“痊愈”和“好转”的差异与“不变”和“恶化很满意”的差异一样,即有序分类变量各类别之间不是可能是定距、也可能不是定距的,这是与连续变量的根本不同。有序分类变量的示例如下:

患者对医疗效果的满意程度,用5类测量:1-非常不满意、2-不满意、3-一般、4-满意、5-非常满意

对疾病的疗效:用4类测量:1-痊愈、2-好转、3-不变、4-变差

BMI指数是一种用于评估体重水平的指标。一般来说,BMI是连续变量(例如BMI为23.7或BMI为34.1),但按以下方式分类时可以视为有序分类变量:体重过轻(BMI小于18.5)、健康/正常体重(BMI在18.5—23.9之间)、超重(BMI在24—27.9之间)和肥胖(BMI大于28)。

二分类变量是只有两个类别的分类变量。二分类变量的类别之间没有顺序,不能像有序分类变量的类别那样进行排序。比如,性别变量就是一个二分类变量,可以分为“男性”和“女性”两个分类。再如,罹患心脏病也是一个二分类变量,分为“是”和“否”两个分类。

二分类变量类别是互斥的,一个研究对象不能同时分属于两个类别,比如一个人不能同时是男性或者女性,也不能同时患有心脏病又没有心脏病。二分类变量的示例如下:

性别,两个类别:男性或女性

罹患心脏病,两个类别:是或否

研究分组,两个类别:实验组或对照组

无序分类变量是具有三个及以上类别的分类变量。无序分类变量的类别之间没有内在顺序,也不能像有序分类变量类别那样进行排序。比如,出行方式是一个典型的无序分类变量,可以分为自行车、自驾、出租车、地铁或公交5个类别。无序分类变量的类别也是互斥的,一个研究对象不能同时分属于不同的类别,比如一次出行不能同时坐地铁又自己开车。无序分类变量的示例如下:

手机品牌,四个类别:苹果、三星、华为或其他

头发的颜色,五个类别:棕色、黑色、金色、红色或者灰色

民族,七个类别:汉族、回族、蒙古族、满族、维吾尔族、朝鲜族或其他

自变量也称为预测变量或解释变量,因变量也称为应答变量或结局变量。两者的区分在于,自变量可以影响因变量,因变量的值取决于对应自变量的值。也可以用因果关系来区分自变量和因变量,即自变量的变化导致了因变量的变化(但自变量和因变量之间并不一定真的存在因果关系)。自变量是对因变量的描述,而因变量可以被自变量所解释。

研究设计也可以帮助我们区分自变量和因变量。举例来说,我们计划开展一项研究分析不同剂量药物的治疗效果,治疗药物就是这个研究的自变量,治疗效果则是因变量。

比如我们想知道抗感染药物剂量(1.5 mg / d、4 mg /d或者 8 mg/d)与患者发热时长的关系,抗感染药物剂量就是自变量,因为这个剂量的是由研究者干预产生的,且很可能是发热时长差异的原因;而同时发热时长就是这项研究的因变量。

横断面调查并不区分自变量和因变量。举例来说,研究者根据问卷调查研究对象的工作效率(1-5类:1代表非常高效、5代表非常低效)和锻炼情况(1-4类:1代表经常锻炼、4代表不锻炼)的关系。

在该研究中,受调查者的工作效率和锻炼情况并不存在明确的因果关系,因为效率高可能意味着受调查者有更多的锻炼时间,而反之经常锻炼可能也会提高工作效率。因此,我们就不区分该研究的自变量和因变量。

本文先说说研究中涉及两个变量的情况。

Pearson相关用于评估两个连续变量之间的线性关联强度。这种统计方法本身不区分自变量和因变量,但如果您根据研究背景已经对变量进行了区分,我们仍可以采用该方法判断相关性。

Pearson相关不区分自变量和因变量。虽然这不影响我们采用Pearson相关分析两个连续变量的相关性,但如果还是想通过统计方法区分一下,可以采用线性回归。

这里还需要判断有序分类变量是否为定距变量。如果认为拟分析的有序分类变量是定距变量,我们就可以为变量中的类别赋值,然后根据这些数值进行分析(即看作连续变量),比如测量满意度(从“完全同意”到“完全不同意”5个类别)就是一个定距变量,可以用1-5为各类别赋值,即1 =完全同意、2 =同意、3 =一般、4 =不同意、5 =完全不同意。

对于不能作为定距变量的有序分类变量,比如军衔的类别(少将、中将、上将、大将等)之间就不是等距的,就不能赋值后对数值进行分析(只能对类别进行分析)。

实际上,将有序分类变量作为连续变量进行分析,这在大多数情况下可能不符合我们的研究目的。对类别进行分析是对有序分类变量相关性分析的常见选择。但是,如果基于的研究背景,待分析的有序分类变量确实可以作为定距变量处理,也是可以的。

Mantel-Haenszel 趋势检验。该检验也被称为Mantel-Haenszel 卡方检验、Mantel-Haenszel 趋势卡方检验。该检验根据研究者对有序分类变量类别的赋值,判断两个有序分类变量之间的线性趋势。

Spearman相关又称Spearman秩相关,用于检验至少有一个有序分类变量的关联强度和方向。

Kendall's tau-b 相关系数是用于检验至少有一个有序分类变量关联强度和方向的非参数分析方法。该检验与Spearman相关的应用范围基本一致,但更适用于存在多种关联的数据(如列联表)。

卡方检验常用于分析无序分类变量之间的相关性,也可以用于分析二分类变量之间的关系。但是该检验只能分析相关的统计学意义,不能反映关联强度。因此,我们常联合Cramer's V检验提示关联强度。

Fisher精确检验可以用于检验任何R C数据之间的相关关系,但最常用于分析2 2数据,即两个二分类变量之间的相关性。与卡方检验只能拟合近似分布不同的是,Fisher精确检验可以分析精确分布,更适合分析小样本数据。但是该检验与卡方检验一样,只能分析相关的统计学意义,不能反映关联强度。

确定进行两个二分类变量的相关性分析后,我们需要判断是否区分自变量和因变量。

相对风险是流行病学或前瞻性队列研究中的常用指标,可以在一定条件下比较两个比例之间的关系,但其提示的结果是比值而不是差异。

比值比可以计算多类研究的关联强度,也是很多统计检验(如二分类logistic回归)的常用指标。在相对风险指标不适用的病例对照研究中,比值比仍可以很好地反映结果。

卡方检验可用于分析两个二分类变量之间的关系。但是该检验只能分析相关的统计学意义,不能反映关联强度。因此,该检验可以联合Phi (φ)系数提示关联强度。

Fisher精确检验可以用于检验任何R C数据之间的关系,但最常用于分析2 2数据,即两个二分类变量之间的相关性。与卡方检验只能拟合近似分布不同的是,Fisher精确检验可以分析数据的精确分布,更适用于小样本数据。但是该检验与卡方检验一样,只能分析相关的统计学意义,不能反映关联强度。

Point-biserial相关。Point-biserial相关适用于分析二分类变量和连续变量之间的相关性。其实,该检验是Pearson相关的一种特殊形式,与Pearson相关的数据假设一致,也可以在SPSS中通过Pearson相关模块进行计算,我们会在教程中具体介绍。

确定进行二分类变量和有序分类变量的相关性分析后,我们需要判断是否区分自变量和因变量:

有序Logistic回归。有序Logistic回归在本质上并不是为了分析二分类变量和有序分类变量之间的相关性。但我们仍可以用有序logistic回归及其对应的OR值判断这两类变量之间的统计学关联。

Cochran-Armitage 检验。Cochran-Armitage 检验又称Cochran-Armitage 趋势检验,常用于分析有序分类自变量和二分类因变量之间的线性趋势。该检验可以判断随着有序分类变量的增加,二分类因变量比例的变化趋势,是对其线性趋势的统计学分析。我们将在教程中进一步解释这一问题。

此问题可以使用Mantel-Haenszel卡方检验或Cochran-Armitage趋势检验。Mantel-Haenszel卡方检验也称线性趋势检验(Test for Linear Trend)或定序检验(Linear by Linear Test)。

Mantel-Haenszel卡方检验和Cochran-Armitage趋势检验的区别是:Mantel-Haenszel卡方检验要求一个变量是有序分类变量,另一个变量可以是二分类变量,也可以是有序多分类变量。而Cochran-Armitage趋势检验要求一个变量是有序分类变量,另一个变量是二分类变量。

SPSS不提供Cochran-Armitage趋势检验, Mantel-Haenszel卡方可以得到近似的结果。Cochran-Armitage趋势检验可以在SAS等其它软件中实现(SAS可以同时提供Cochran-Armitage趋势检验和Mantel-Haenszel卡方检验的结果)。

Biserial秩相关:Biserial秩相关可以用于分析二分类变量和有序分类变量之间的相关性。在用二分类变量预测有序分类变量时,该检验又称为Somers' d检验。此外,Mann-Whitney U检验也可以输出Biserial秩相关结果。

Spearman相关。没有适用于分析有序分类变量和连续变量相关性的检验方法,我们需要将连续变量视为有序分类变量进行检验,即分析两个有序分类变量之间的关系。在这种情况下,我们可以应用Spearman相关或者其他针对有序分类变量的检验方法。

E. 职业流行病学常用的调查方法

职业流行病学调查的主要方法:

1.横断面调查:现状调查,属于描述流行病学,快速、花费少可以提出新的病因假设(新的职业性有害因素与职业性病损的病因假设),不能得到因果关系,职业病普查和工作有关疾病的调查研究。

注意的问题:

(1)健康工人效应:掩盖有害因素作用。

(2)时间先后关系不清:因素——疾病。

(3)病程因素:职业病特点,某病程长的疾病可能被高估。

(4)患病资料的解释谨慎

(5)其他:样本量、诊断标准一致性等。

2.分析性流行病学调查

(1)病例-对照研究:因素-疾病之间的因果关系。

统一方法、控制偏倚,由果及因,病因可能性判断,下结论要谨慎;经济、快速、适用于发病率低的疾病研究。统计学指标:比值比。

(2)队列研究:

接触组、对照组,可以推断因素与疾病有无联系及关联程度大小。

指标:发病率、患病率、标化死亡比、相对危险度。

阅读全文

与队列研究使用的统计方法相关的资料

热点内容
核桃树嫁接方法视频 浏览:799
男性问题的治疗方法 浏览:2
快速脱单方法和技巧 浏览:240
三星的录音权限在哪里设置方法 浏览:693
鼻炎怎么治好彻底除根方法视频 浏览:700
佰草集太极泥使用方法 浏览:193
批量安装机械硬盘的方法 浏览:30
板薯的种植方法 浏览:541
单片机销售技巧和方法 浏览:849
小飞蛾的最佳消灭方法 浏览:898
快速背知识的方法 浏览:651
硒鼓用什么方法打不开 浏览:661
如何学好语文教学方法 浏览:561
等差的最佳方法 浏览:966
失眠恢复训练的方法 浏览:235
高三升学最佳方法 浏览:188
租赁车的技巧和方法 浏览:609
房屋用粘钢方法加固如何检测强度 浏览:578
食用油哪几重提炼方法 浏览:690
手机检测手机真假有几种方法 浏览:969