导航:首页 > 研究方法 > 复合函数分析法解题方法

复合函数分析法解题方法

发布时间:2023-08-07 14:46:32

① 复合函数的计算方法

复合函数求到要把复合函数写成分段的内外函数,令内含数=U,然后把U当成X求导,最后乘以U的导数。 书上有公式。复合函数的积分一般可以利用换元法来解。换元后不仅积分变量要随之改变,积分限也要随这改变。例如: 若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是D={x|x∈A,且g(x)∈B} 综合考虑各部分的x的取值范围,取他们的交集。 求函数的定义域主要应考虑以下几点: ⑴当为整式或奇次根式时,R的值域; ⑵当为偶次根式时,被开方数不小于0(即≥0); ⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0; ⑷当为指数式时,对零指数幂或负整数指数幂,底不为0(如,中)。 ⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分。一共有其中方法: 1 待定系数法:在已知函数解析式的构造时,可用待定系数法。 2 配凑法:即已知f(mx+n)=...,将后面多项式配成mx+n的形式,最后替换为x即可; 3 换元法:已知复合函数f(g(x)的表达式时,还可以用换元法求f(x)的解析式。与配凑法一样,要注意所换元的定义域的变化。 4 代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。 5 构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。 6 赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化。

② 复合函数怎么

定义

设y=f(u),u=g(x),当x在u=g(x)的定义域Dg中变化时,u=g(x)的值在y=f(u)的定义域Df内变化,因此变量x与y之间通过变量u形成的一种函数关系,记为
y=f(u)=f[g(x)]称为复合函数,其中x称为自变量,u为中间变量,y为因变量(即函数)
编辑本段
生成条件

不是任何两个函数都可以复合成一个复合函数,只有当μ=φ(x)的值域存在非空子集Zφ是y=f(μ)的定义域Df的子集时,二者才可以构成一个复合函数。
编辑本段
定义域

若函数y=f(u)的定义域是B﹐u=g(x)的定义域是A﹐则复合函数y=f[g(x)]的定义域是
复合函数的导数D={x|x∈A,且g(x)∈B}
编辑本段
周期性

设y=f(u),的最小正周期为T1,μ=φ(x)的最小正周期为T2,则y=f(μ)的最小正周期为T1*T2,任一周期可表示为k*T1*T2(k属于R+)
编辑本段
增减性

复合函数单调性依y=f(u),μ=φ(x)的增减性决定。即“增增得增,减减得增,增减得减”,可以简化为“同增异减”
判断复合函数的单调性的步骤如下:(1)求复合函数定义域;
(2)将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数);
(3)判断每个常见函数的单调性;
(4)将中间变量的取值范围转化为自变量的取值范围;
(5)求出复合函数的单调性。
例如:讨论函数y=0.8^(x^2-4x+3)的单调性。 复合函数的导数解:函数定义域为R。
令u=x^2-4x+3,y=0.8^u。
指数函数y=0.8^u在(-∞,+∞)上是减函数,
u=x^2-4x+3在(-∞,2]上是减函数,在[2,+∞)上是增函数,
∴ 函数y=0.8^(x2-4x+3)在(-∞,2]上是增函数,在[2,+∞)上是减函数。
利用复合函数求参数取值范围
求参数的取值范围是一类重要问题,解题关键是建立关于这个参数的不等式组,必须
将已知的所有条件加以转化。

阅读全文

与复合函数分析法解题方法相关的资料

热点内容
澳洲牛油果油食用方法 浏览:818
歌德教育方法和技巧 浏览:480
西装行李箱的正确安装方法 浏览:485
自制抽绳收纳方法视频 浏览:951
在水里写字的正确方法 浏览:180
浙江省的作文技巧和方法 浏览:541
压枪方法是手指压在哪里 浏览:927
拇指跖疣最简单的自愈方法 浏览:155
九阳豆浆机制作豆浆方法视频教程 浏览:261
一岁轮状病毒怎么治疗最好的方法 浏览:813
核桃保养油的使用方法 浏览:978
用筷子做小鸭子的简单方法 浏览:155
自动挡离合器加油的正确方法 浏览:125
学数学的基本方法和技巧初中课件 浏览:424
麻将席去螨虫的最简单方法 浏览:929
如何做到退热的方法 浏览:698
上海核桃粉芝麻的食用方法 浏览:555
如何判断直男最好方法 浏览:973
苹果7手机权限在哪里设置方法 浏览:599
心理分析方法的咨询目标 浏览:532