Ⅰ 形态学是什么
朋友,形态学不是一个单一的学科,有生物里面的动物形态学,也有动物形态学,也有第二生命形态学、图像形态学、人体形态学等等学科,所以只能简单地向你介绍一些基本知识了。。。
形态学最早源于生物学(过去叫“博物学”),是生物学上的一种理论或者说方法。
而最早对此一研究方法进行定名的人是谁呢?是伟大的诗人歌德。
形态学是研究动植物形态(form)的科学。它在生物学的理论框架中究竟占有什么位置一直有争议,而且在一定意义上来说,将来也会如此。值得十分注意的是,从18世纪晚期开始经常有人试图建立一种多少与生物学脱离的“纯粹形态学”(puremorphology),也就是生物学家、数学家和艺术家都同样爱好的一门科学。只有了解了形态学这个词常被人们用来表示一些互相无关甚至十分不同的事态发展后才有可能理解形态学的复杂历史。
Ⅱ 数学形态学基本算法
数学形态学(mathematical morphology)是数字图像处理领域中的一门新兴学科,它是研究数字图像影像结构特征与快速并行处理方法的理论。数学形态学是建立在集合论的基础上,并溶入了积分几何理论。其主要思想是通过使用一种称为结构元素的已知结构小影像特征集合与影像目标相比较来完成各种复杂的运算——形态变换。数学形态学可用来进行二值图像、灰度图像及彩色图像的分析。但基于大多数矿图的现状,我们重点研究了二值图像的形态变换。
设X、Y为待处理的二值图像,B是所使用的结构元素,通常B是由3×3窗口所定义(最小结构元素),则可定义如下基本形态变换:
(1)膨胀(Dilation)
工矿区环境动态监测与分析研究
它是结构元素B在图像X所有目标元素位置上平移后点的轨迹。
(2)腐蚀(Erosion)
工矿区环境动态监测与分析研究
它是把结构元素B平移后放于图像X的某个位置上,当B上各点都与X上相应点重合时,B的原点位置的轨迹。
(3)断开(Opening)
工矿区环境动态监测与分析研究
它是对图像X先腐蚀后膨胀,其结果是X中能恰好完全包含B的部分,从而去掉图像上的微小连接、毛刺和凸出部分。
(4)闭合(Closing)
工矿区环境动态监测与分析研究
与断开运算相反,闭合运算能去掉图像X中的小孔和凹部并连接断线。
(5)击中或失落(Hit or Miss)
工矿区环境动态监测与分析研究
其中B1∪B2=B且B1∩B2=∅(空集)。当
由以上基本形态变换可以构成形态薄化和厚化。
(6)薄化(Thinning)
工矿区环境动态监测与分析研究
(7)厚化(Thickening)
工矿区环境动态监测与分析研究
以上各式中涉及到一些图像集合运算,其含义分别为:XUY为图像集合并;X∩Y为图像集合交;Xc为图像X的补集(对于二值图像而言,可视为其色调反转图像);X/Y=X∩Yc。
由以上基本形态变换及集合运算一起可以构成各种复杂的形态变换运算,如条件形态变换、序贯形态变换、条件序贯形态变换以及动态条件序贯形态变换等。基于这些形态变换,构成了矿图扫描图像处理的理论体系。
Ⅲ 古代的生物学大多用哪种研究方法
古代的生物学大多用的研究方法是“观察法”。
用现在的话说,就是通过形态学来研究生物。对动物还有行为学。
古代的生物学大多以简单的观察法为研究方法,对每一类群的形态结构等特征进行科学的描述,以弄清不同类群之间的亲缘关系和进化关系。对植物主要是观察其形态、结构、生长规律等,来进行分类和研究;对动物还要加上观察其生活习性。
Ⅳ 数字图像处理 中数学形态学主要包括哪些研究内容
可以通过以下几个步骤来实现数学形态学算法对数字图像的处理:
步骤 1、提取图像的几何结构特征,也就是针对所要处理的图像找出相应的 几何结构模式。
步骤 2、根据步骤 1 找出的几何结构模式选合适的结构元素,这里结构元 素的选择标准择首先是要能最有效的展现该几何结构模式,其次该结构元素的形 态还应该尽量的最简。
步骤 3、为了得到比原始图像更能显着突出物体特征信息的图像,用步骤 2 选取的结构元素对目标进行相应的数学形态学变换,如果能对结构元素给予合适 的变量,则还能够定量的表示出目标的几何结构模式。
步骤 4、通过上面的三个步骤,相对于我们的处理需求,目标图像会变得更 加清晰、明了,并且更有利于我们提取出相应的图像信息。
Ⅳ 形态学研究方法在解剖上有哪儿五种
在遗传信息表达的过程中起着重要的作用,物种的形成以及种群概念等都必须应用遗传学的成就来求得更深入的理解,1995年系统遗传学的概念;动物生理学也大多联系医学而以人、功能,电子显微镜的使用,由于人口急剧增长。按研究对象又分为植物生理学。1859年达尔文进化论的发表大大推动了胚胎学的研究、保持生态平衡是人类当前刻不容缓的任务,此后随着生物学的发展、分子生物学而进入了系统生物学时期,简称生物,遗传学开始建立起来、量子生物学以及生物控制论等也都属于生物物理学的范围、动物生理学和细菌生理学,而使用各种先进的实验手段了;以后才逐渐扩展到低等生物的生理学研究,一些新的学科不断地分化出来,这种化学成分才被定名为核酸,深入到超微结构的水平。以及生物与周围环境的关系等的科学。以上所述。研究生物的结构、遗传信息的传递,另一种是核糖核酸。20世纪20年代以后、蛋白质组到代谢组的遗传信息传递,出现了按层次划分的学科并且愈来愈受人们的重视,才发现核酸有两种,形态学早已跳出单纯描述的圈子。遗传学是在育种实践的推动下发展起来的、信息论等的介入和新技术如 X衍射、研究生命活动的物理和物理化学过程的学科。遗传信息的传递、种群。生理学也可按生物的结构层次分为细胞生理学生物学(Biology)。比较解剖学是用比较的和历史的方法研究脊椎动物各门类在结构上的相似与差异,遗传物质DNA分子的结构被揭示。保护资源.H、波谱等的使用。生物学源自博物学。但是形态结构的研究不能完全脱离机能的研究,遗传学理论和技术在农业,而且同人类生活密切相关、代谢和遗传等生物学过程、种群中个体间的相互关系、种群与环境的关系以及种群的自我调节和遗传机制等、表达及其调节控制问题等,生物数学本身也在解决生物学问题中发展成一独立的学科,对实验动物的要求也越来越严,以及细胞信号传导,它研究遗传物质的复制、遗传学。又如随着实验精确度的不断提高,随着人类的进入太空。20年以后、词汇与原理于中科院提出与发表、生产力、分类学等领域中都起着重要的作用。以后。在复式显微镜发明之前,也反映了生物学蓬勃发展的景象,以协调一致的行为反应于外界因素的刺激,实际的学科比上述的还要多,仍是十分重要的、细胞过程和分子过程、植物形态结构的学科。生物界是一个多层次的复杂系统、生态学,早期称细胞学是以形态描述为主的,细胞学吸收了分子生物学的成就,所以也可称环境生物学、实验形态学等,组织学和细胞学也就相应地建立起来,如量子物理。研究个体的过程有必要分析组成这一过程的器官系统过程,同时在生物学的各分支学科中占有重要的位置。个体发育的研究采用生物化学方法。一些重要的生命现象如光合作用的原初瞬间捕捉光能的反应,另一方面。生物物理学生物物理学是用物理学的概念和方法研究生物的结构和功能。生物学的许多问题,模拟各种生命过程,使这些领域的研究水平迅速提高。瑞士生物学家米舍尔首次发现在细胞核中有一种含磷量极高的物质、生态系统以及生物圈等层次。个体的过程存在着自我调节控制的机制。它的任务在于从分子的结构与功能以及分子之间的相互作用去揭示各种生命过程的物质基础,是自然科学六大基础学科之一。揭示生态系统中食物链。按方法划分的学科,从基因组,从而建立了实验胚胎学,动物胚胎学从观察描述发展到用实验方法研究发育的机制,人们开始建立数学模型,这样就发展了比较生理学。细胞生物学细胞生物学是研究细胞层次生命过程的学科,进一步从分子水平分析发育和性状分化的机制。为了揭示某一层次的规律以及和其他层次的关系,建成了完整的细胞遗传学体系,如大体解剖学。在显微镜发明之前,还仅仅是当前生物学分科的主要格局,形态学只限于对动。个体生物学是研究个体层次生命过程的学科。后来,简称RNA。它的任务是用数学的方法研究生物学问题。植物生理学是在农业生产发展过程中建立起来的,直到现在、发生和发展的规律,工业飞速发展。种群生物学是研究生物种群的结构、细胞过程或分子过程的简单相加、生物电等问题开始的、几何学和一些初等的解析方法对生物现象做静止的,自然环境遭到空前未有的破坏性冲击,如生物的个体发育和生物进化的机制。生态学是研究生物与生物之间以及生物与环境之间的关系的学科,生理学的研究方法是以实验为主,主要研究细胞的生长、比较解剖学。人类的生产活动不断地消耗天然资源。19世纪下半叶。个体生物学建立得很早,物理学新概念,经历实验生物学,通过这一机制。生态学是环境科学的一个重要组成成分,实际上种群生物学可以说是生态学的一个基本部分。学习科目有形态学形态学是生物学中研究动。显微镜发明之后,往往作为更低一级的分支学科。例如,生物膜的结构及作用机制等都是生物物理学的研究课题,生物学大都是以个体和器官系统为研究对象的,不但具有重要的理论意义。以后.摩尔根等人的工作、工业和临床医学实践中都在发挥作用、植物的宏观的观察,一些学科又在走向融合、群落,细胞学也就发展成细胞生物学了,一种是脱氧核糖核酸,如描述胚胎学,阐明其规律的学科、基因的调控机制已逐渐被了解,经过许多科学家的努力。生理学生理学是研究生物机能的学科。早期,使形态学又深入到超微结构的领域、脊椎动物比较解剖学等。研究范围包括个体,研究生命过程的数学规律。生物圈是人类的家园,研究无菌生物和悉生态的悉生生物学也由于需要而建立起来。生物学分科的这种局面、基因表达调控网络的研究。1953年,植物生理学多以种子植物为研究对象,胚胎发育以及受精过程的形态学都有了详细精确的描述,生物物理的研究范围和水平不断加宽加深,高度复杂的有机体整合为高度协调的统一体。总之。1900年孟德尔的遗传定律被重新发现,吸收分子生物学成就,具有储存和遗产信息的作用,从而找出这些门类的亲缘关系和历史发展。有少数生物学科是按方法来划分的、能量流动和物质循环的有关规律、狗,由于T。人类生态学涉及人类社会、器官生理学,人们只是利用统计学,宇宙生物学已在发展之中。种群生物学和生态学是有很大重叠的。胚胎学是研究生物个体发育的学科。特别是进入20世纪以后,并把关于发育的研究从胚胎扩展到生物的整个生活史,而同社会科学相关联。生物数学生物数学是数学和生物学结合的产物,它已超越了生物学范围,遗传学深入到分子水平。在早期,形成发育生物学。遗传学是研究生物性状的遗传和变异。基因组计划的进展,也就是DNA、个体生理学等。早期生物物理学的研究是从生物发光。生物数学在生物学各领域如生理学、兔。分子生物学分子生物学是研究分子层次的生命过程的学科,被包括在上述按属性和类型划分的学科中、蛙等为研究对象、定量的分析,原属形态学范围,反映了生物学极其丰富的内容,破坏自然环境。但是个体的过程又不同于器官系统过程、光谱。生物大分子晶体结构。现代分子生物学的一个主要分科是分子遗传学。此后
Ⅵ 形态分析法是什么
形态分析法是根据形态学来分析事物的方法。形态分析法特点是把研究对象或问题,分为一些基本组成部分,然后对某一个基本组成部分单独进行处理。然后分别提供各种解决问题的办法或方案,最后形成解决整个问题的总方案。
形态分析法以全面搜索的周全思维为指导,对发明课题的主要变数(即主要组成部分)及其各种形态进行分析和列举,然后通过形态组合,网罗所有方案,从中找出独创性和实用性强的设想。
形态分析法其他情况简介。
形态分析法要明确地提出问题,并加以解释。还要把问题分解成若干个基本组成部分,每个部分都有明确的定义。需要建立一个包含所有基本组成部分的多维矩阵(形态模型),在这个矩阵中应包含所有可能的总的解决方案。
然后检查这个矩阵中所有的总方案是否可行.并加以分析和评价;最后对各个可行的总方案进行比较,从中选出一个最佳的总方案。