⑴ 口算心算的速算方法是什么
1、加大减差法:前面加数加上后面加数的整数,减去后面加数与整数的差等于和。
2、减大加差法:被减数减去减数的整数,再加上减数与整数的差,等于差。
3、互补两个数的差:两位互补的数相减,被减数减50乘以2;三位互补的数相减,被减数减500乘以2;四位互补的数相减,被减数减5000乘以2,以此类推。
4、数字位置颠倒两个两位数的和:一个数的十位数加上它的个位数乘以11等于和。
(1)118口算方法是什么扩展阅读:
破十法即:当个位不够减时,就用10减去减数,剩下的数和个位上的数相加,即破十法。
破十法口诀
十几减九,几加一;十几减七,几加三;十几减五,几加五;十几减三,几加七;十几减八,几加二;十几减六,几加四;十几减四,几加六;十几减二,几加八。
⑵ 口算怎么算
看来你从来没有锻炼过口算能力,主要是小学基础没打好,口算的关键是锻炼自己对数字的记忆能力。
随便举个例子吧:
口算:34+58
口算方法一:
先用30+50=80 (脑子记住)
再用4+8=12 (脑子记住)
最后80+12=92
口算方法二:
先用
34+50=84 (脑子记住)
再用84+8=92
口算能力强的人并不是计算能力有多强,而是对数字的记忆能力很强,脑子里记几个数不忘而且不混淆。
再给你举个例子:
82-37
口算方法一:
把82先看成87(欠了5),87-37=50 (50欠了5个)
用50-5=45
口算方法二:
先算82-30=52(脑子记住)
52-7=45
选一种以上你喜欢的方法好好锻炼,随时随地自己给自己出两个数相加减,锻炼一个月,我想你就会了。
有些卖菜的老太太几乎没上过学,照样算的很快,就是熟能生巧而已,这比x,y简单多了。
⑶ 口算有什么快速方法呢
1、十位数是1的两位数相乘
乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。
2、个位是1的两位数相乘
十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添上1。
3、十位相同个位不同的两位数相乘
被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。
4、首位相同,两尾数和等于10的两位数相乘
十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。
5、首位相同,尾数和不等于10的两位数相乘
两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。
⑷ 小学一年级数学口算方法
1.做减法,想加法。利用减法是加法的逆运算关系,用加法来思考。如12-8,想8+( )=12。
2.破十法。用“破十法”可以这样想:10-7+3=6
3.连减法(平时法),用连减法可以这样想:13-3-4=6,也就是把7分成3和4。
4.加补法。还可以这样想:13-10+3=6
5.熟背凑十歌:
一九一九好朋友,
二八二八手拉手,
三七三七真亲密,
四六四六一起走,
五五凑成一双手。
⑸ 能快速口算的技巧有哪些方法
一、一种做多位乘法不用竖式的方法.我们都可以口算1X1 10X1,但是,11X12 12X13 12X14呢?这时候,大家一般都会用竖式,通过竖式计算,得数是132、156、168.其中有趣的规律:即个位上的数字正好是两个因数个位数字的积.十位上的数字是两个数字个位上的和.百位上的数字是两个因数十位数字的积.例如:
12X14=168 1=1X1 6=2+4 8=2X4如果有进位怎么办呢?这个定律对有进位的情况同样适用,在竖式时只要~满几时,就向下一位进几.~例如:
14X16=224 4=4X6的个位 2=2+4+6 2=1+1X1 试着做做看下面的题:
12X15= 11X13= 15X18= 17X19=二、几十一乘以几十一的速算方法 例如: 21×61= 41×91= 41×91= 51×61= 81×91= 41×51= 41×81= 71×81= 这些算式有什么特点呢?是“几十一乘以几十一”的乘法算式,我们可以用:先写十位积,再写十位和(和满10 进1),后写个位积.“先写十位积,再写十位和(和满10 进1),后写个位积”就是一见到几十一乘以几十一的乘法算式,如果十位数的和是一位数,我们先直接写十位数的积,再接着写十位数的和,最后写上1 就一定正确;如果十位数的和是两位数,我们先直接写十位数的积加1 的和,再接着写十位数的和的个位数,最后写一个1 就一定正确.我们来看两个算式:21×61=41×91= 用“先写十位积,再写十位和(和满10 进1),后写个位积”这种速算方法直接写得数时的思维过程.第一个算式,21×61=?思维过程是:2×6=12,2+6=8, 21×61 就等于1281.第二个算式,41×91=?思维过程是:4×9=36,4+9=13,36+1=37, 41×91 就等于3731. 试试上面题目吧!然后再看看下面几题 61×91= 81×81= 31×71= 51×41=一、10-20的两位数乘法及乘方速算方法:尾数相乘,被乘数加上乘数的尾数(满十进位)【例1】 1 2 X 1 3 ----------1 5 6 (1)尾数相乘2X3=6 (2)被乘数加上乘数的尾数12+3=15 (3)把两计算结果相连即为所求结果【例2】 1 5X 1 5------------2 2 5(1)尾数相乘5X5=25(满十进位)(2)被乘数加上乘数的尾数15+5=20,再加上个位进上的2即20+2=22(3)把两计算结果相连即为所求结果二、两位数、三位数乘法及乘方速算a.首数相同,尾数相加和是十的两位数乘法 方法:尾数相乘,首数加一再相乘 【例1】 5 4X 5 6---------3 0 2 4(1)尾数相乘4X6=24直接写在十位和个位上(2)首数5加上1为6,两首数相乘6X5=30(3)把两结果相连即为所求结果【例2】 7 5X 7 5----------5 6 2 5(1)尾数相乘5X5=25直接写在十位和个位上(2)首数7加上1为8,两首数相乘8X7=56(3)把两计算结果相连即可b.尾数是5的三位数乘方速算方法:尾数相乘,十位数加一,再将两首数相乘【例】 1 2 5X 1 2 5------------1 5 6 2 5(1)尾数相乘5X5=25直接写在十位和个位上(2)首数12加上1为13,再两数相乘13X12=156(3)两计算结果相连c.任意两位数乘法方法:尾数相乘,对角相乘再相加,首数相乘 【例】 3 7X X 6 2---------2 2 9 4(1)尾数相乘7X2=14(满十进位)(2)对角相乘3X2=6;7X6=42,两积相加6+42=48(满十进位)(3)首数相乘3X6=18加上十位进上的4为18+4=22(4)把计算结果相连即为所求结果b.任意两位数及三位平方速算方法:尾数的平方,首数乘尾数扩大2倍,首数的平方[例] 2 3X 2 3---------5 2 9 (1)尾数的平方3X3=9(满十进位)(2)首尾数相乘2X3=6扩大两倍为12写在十位上(满十进位)(3)首数的平方2X2=4加上十位进上的1为5(4)把计算结果相连即为所求结果c.三位数的平方与两位数的平方速算方法相同[例] 1 3 2 X 1 3 2------------1 7 4 2 4(1)尾数的平方2X2=4写在个位(2)首尾数相乘13X2=26扩大2倍为52写在个位上(满十进位)(3)首数的平方13X13=169加上十位进上的5为174(4)把计算结果相连即为所求结果〖注意:三位数的首数指前两位数字!〗三、大数的平方速算方法:把题目与100相差,相差数称之为差数;先算差数的平方写在个位和十位上(缺位补零),再用题目减去差数得一结果;最后把两结果相连即为所求结果【例】 9 4X 9 4-----------8 8 3 6(1)94与100相差为6(2)差数6的平方36写在个位和十位上(3)用94减去差数6为88写在百位和千位上(4)把计算结果相连即为所求结果 B55 × 55 = ? 27 × 23 = ? 91 × 99 = ? 43 × 47 = ? 88 × 82 = ? 74 × 76 = ?大家能够很快算出这些算式的正确答案吗?注意,是很快哦!你能吗?我能--3025 ; 621 ; 9009 ;2021 ; 7216 ; 5624 ;很神气吧!速算秘诀:(就以第一题为例好啦)(1)分别取两个数的第一位,而后一个的要加上一以后,相乘.[5×(5+1)]=30;(2)再将末尾数相乘的得数写在后面就可以得出正确的答案了.5×5=25;(3)3025!Bingo!其它依次类推就行了.仔细看每一个式子里的两位数的十位是相同的,而个位的两数则是相补的.这样的速算秘诀只能够适用于这种情况的算式.所以说大家千万不要把巧算和真正的速算混淆在一起,真正的速算是任何数都能算的.一、关于9的数学速算技巧(两位数乘法)
关于9的口诀:
1 × 9 = 9 2 × 9 = 18 3 × 9 = 27 4 × 9 = 36
5 × 9 = 45 6 × 9 = 54 7 × 9 = 63 8 × 9 = 72
9 × 9 = 81从上面的口诀口有没有看到从1到9任何一个数和9相乘的积,个位数和十位数的和还是等于9.
你看上面的:0 + 9 =9;1 + 8 = 9;2 + 7 = 9;3 + 6 = 9;
4 + 5 = 9;5 + 4 = 9;6 + 3 = 9;7 + 2 = 9;8 + 1 = 9下面我们再做一些复杂一点的乘法:
18 × 12 = ? 27 × 12 = ? 36 × 12 = ? 45 × 12 = ?
54 × 12 = ? 63 × 12 = ? 72 × 12 = ? 81 × 12 = ?
关于两位数的乘法,上面的题目中,前面的乘数都是9的倍数,而且个位和十位的和都等于9.
这样我们能不能找到一种简便的算法呢?也就是把两位数的乘法变成一位数的乘法呢?
我们先把上面这些数变一变.
18 = 1 × 10 + 8;27 = 2 × 10 + 7;36 = 3 × 10 + 6;
45 = 4 × 10 + 5;54 = 5 × 10 + 4;63 = 6 × 10 + 3;
72 = 7 × 10 + 2;81 = 8 × 10 + 1;
我们再把上面的数变一变
1 × 10 + 8 = 1 × 9 + 1+8 = 1 × 9 + 9 = 1 × 9 + 9 = 2 × 9
当然如果知道口诀你们可以直接把18 = 2 × 9同样的方法你们可以拆出下面的数,也可以背口诀27 = 3 × 9 ; 36 = 4 × 9 ;45 = 5 × 9
54 = 6 × 9 ; 63 = 7 × 9 ;72 = 8 × 9
81 = 9 × 9
为了找到计算上面问题的方法,我们把上面的式子再变一次.
18 = 2×(10-1);27 = 3×(10-1);36 = 4×(10-1)
45 = 5×(10-1);54 = 6×(10-1);63 = 7×(10-1)
72 = 8×(10-1);81 = 9×(10-1)
现在我们来算上面的问题:
18 × 12 = 2×(10-1)× 12
= 2 ×(12 ×10 - 12)
= 2 ×(120- 12)
120 - 12 = 108;
这样就有了
18 × 12 = 2 × 108 = 216
是不是把一个两位数的乘法变成了一位数的乘法?
而且可以通过口算就得出结果?我用这种方法教威威算乘法,他只需要我算这一个,后边的题目就自己会算了.
上面我们的计算好象很麻烦,其实现在总结一下就简单了.
⑹ 三年级数学快速口算方法
只要熟练掌握计算法则和运算顺序,根据题目本身的特点,使用合理、灵活的计算方法,化繁为简,化难为易,就能算得又快又准确。先为大家介绍5个速算技巧:
1. 方法一:带符号搬家法
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
例如:
23-11+7=23+7-11
4×14×5=4×5×14
10÷8×4=10×4÷8
2. 方法二:结合律法
加括号法
(1)在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
例如:
23+19-9=23+(19-9)
33-6-4=33-(6+4)
(2)在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
例如:
2×6÷3=2×(6÷3)
10÷2÷5=10÷(2×5)
去括号法
(1)在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加)。
例如:
17+(13-7)=17+13-7
23-(13-9)=23-13+9
23-(13+5)=23-13-5
(2)在乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。)
例如:
1×(6÷2)=1×6÷2
24÷(3×2)=24÷3÷2
24÷(6÷3)=24÷6×3
3. 方法三:乘法分配律法
分配法
括号里是加或减运算,与另一个数相乘,注意分配。
例如:
8×(5+11)=8×5+8×11
提取公因式法
注意相同因数的提取。
例如:
9×8+9×2=9×(8+2)
4. 方法四:凑整法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦,有借有还,再借不难嘛。
例如:
99+9=(100-1)+(10-1)
5. 方法五:拆分法
拆分法就是为了方便计算,把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,4和25,8和125等。分拆还要注意不要改变数的大小哦。
例如:
32×125×25
=4×8×125×25
=(4×25)×(8×125)
=100×1000
要想让孩子熟练运用速算方法,需要通过持之以恒的练习,提升计算能力,这样,无论平时做作业还是考试都能游刃有余。
建议家长每天抽出5分钟时间,帮助孩子进行口算练习,培养孩子快速、准确口算的能力。在练习过程中,也要记录好用时,做完后马上核对正误,并分析做错的原因。
⑺ 口算的技巧有哪些
口算是我们生活当中经常要运用到的一种数学方法,对于学生来说,主要是在小学阶段用得比较多。掌握一定的口算速算技巧,可以让数学学习更加有效,让孩子爱上学习数学。口算的速算技巧有很多,适合于不同的年龄阶段,比如凑整法就是根据式题的特征,应用定律和性质使运算数据“凑整”。
1、加法凑整
例:32+15+8
原式=32+8+15=40+15=55
几个数相加,如果有几个数相加能凑成整十的数,可以调换加数的位置,再把几个数相加。
2、减法凑整
例:50-13-7
原式=50-(13+7)=50-20=30
从一个数里连续减去几个数,如果减数的和能凑成整十的数,可以把减数先加后再减。
3、乘法凑整
例1:25×14×4
原式=25×4×14=100×14=1400
先熟记25×4=100,125×8=1000;碰到25、125这样大的乘数先看看是否可以凑出4、8。
例2:25×32
原式=25×4×8=10×8=80
在熟记上面式子的基础上,把题目中的某数“拆开”分别与另一个数运算。
2.巧用乘法分配律
巧用乘法分配律格式为:m(a+b)=ma+mb
例1: 33×99
原式=33×(100-1)=3300-33=3267
例2: 666×666
原式=333×2×222×3=999×444=(1000-1)×444=444000-444=443556
3.找基准数法
找基准数法就是先把每个数与基准数的差累计起来,再加上基数与项数的积。
例:623+595+602+600+588
可选择600为基数,原式=600×5+23-5+2-12=3008
4.熟记常用数据
熟记1到20各自然数的平方数,可以有效提高做计算题的速度。