㈠ 药物中测定某物质含量的常用方法有那些(3种以上)
方法的验证:
订入质量标准的含量测定法不同于一般质量考察的方法,须经过严格的方法学验证,不同原理的测定法具有不同的验证内容及要求:
(1)容量分析法的验证:①精密度:用原料药精制品考察方法精密度,平行试验5个样本的RSD≤0.2%;②准确度:以测定原料精制品(含量>99.5%)的回收率(测定值与理论值的比值)计算,应在99.7%~100.3%之间(n=5,RSD≤0.1%);③滴定终点确定的依据:包括滴定曲线的绘制,如用指示剂法确定终点,应用电位法校准终点颜色,提供指示剂颜色与电位变化情况的对比结果;④耐用性:考察测定条件(供试液稳定性、样品提取次数、时间等)有微小变动时,测定结果不受影响的承受程度,如测试条件要求苛刻时则应在方法中注明。
(2)HPLC法的验证:①精密度:RSD≤2%(n=5);②准确度:用于制剂时,要考察辅料的影响,将一定量药物加到按处方比例配制的辅料中(为标示量的80%~120%)制成高、中、低三个剂量,混合均匀后,每个剂量取三份样品,按拟定方法测定回收率,应在98%~102%之间(n=9,
RSD≤2%)。③线性范围:用已知含量的精制品配制一系列浓度的溶液(n=5~7),用浓度C对峰面积A或峰高h或被测物的响应值之比进行回归处理,线性方程的相关系数r≥0.999,截距应趋于零,并提供线性关系图;④专属性:辅料、有关物质或降解产物峰对主药峰应无干扰;⑤耐用性:考察测定条件(供试液稳定性、流动相组成和pH值、不同品牌或批号的同类色谱柱、柱温、流速、样品提取次数、时间等)有微小变动时,测定结果不受影响的承受程度,如测试条件要求苛刻时则应在方法中注明;⑥灵敏度:作为常量分析法,此项可不作主要要求。
(3)UV法的验证:①精密度:RSD≤1%(n=5);②准确度:方法同HPLC法,回收率应在98%~102%之间(n=9,
RSD≤2%),同时要求辅料、有关物质或降解产物在测定波长处无吸收。③线性范围:用已知含量的精制品配制一系列浓度的溶液(n=5~7,吸收度A在0.2~0.7间),用浓度C对峰面积A或峰高h或被测物的响应值之比进行回归处理,线性方程的相关系数r应≥0.999,截距应趋于零,并提供线性关系图;④耐用性:考察测定条件(供试液稳定性、样品提取次数、时间、比色法中显色剂用量、反应温度、时间、pH值等)有微小变动时,测定结果不受影响的承受程度,如测试条件要求苛刻时则应在方法中注明;⑤灵敏度:作为常量分析法,此项可不作主要要求。
吸收度A在0.2~0.8间其线形关系好,利用标准品建立标准曲线后,受测溶液做适当的稀释,使其吸收度在0.2~0.8,如果太小或太大,都将影响测定的准确性的。
㈡ 检出限的检出限与测定限
1检出限
为某特定分析方法在给定的置信度内可从样品中检出待测物质的最小浓度或最小量。所谓“检出”是指定性检出,即判定样品中存有浓度高于空白的待测物质。
检出限除了与分析中所用试剂和水的空白有关外,还与仪器的稳定性及噪声水平有关。在灵敏度计算中没有明确噪声的大小,因而操作者可以将检测器的输出信号,通过放大器放到足够大,从而使灵敏度相当高。显然这是不妥的,必须考虑噪声这一参数,将产生两倍噪声信号时,单位体积载气或单位时间内进入检测器的组分量称为检出限。
则:
D = 2N / S
式中:
N——噪声(mV或A);
S——检测器灵敏度;
D——检出限,其单位随S不同也有三种:
Dg=2N / Sg,单位为mg/ml
Dv=2N / Sv,单位为ml/ml
Dt=2N / St,单位为g/s
有时也用最小检测量(MDA)或最小检测浓度(MDC)作为检测限。它们分别是产生两倍噪声信号时,进入检测器的物质量(g)或浓度(mg/ml)。
不少高灵敏度检测器,如FID、NPD、ECD等往往用检出限表示检测器的性能。
灵敏度和检出限是两个从不同角度表示检测器对测定物质敏感程度的指标,前者越高、后者越低,说明检测器性能越好。
从而可见,测量方法的检出限于分析空白值、精密度、灵敏度密切相关。他是分析方法的一个综合性的重要计量参数。
2检出限的计算方法
1)在《全球环境监测系统水监测操作指南》中规定:给定置信水平为95%时,样品测定值与零浓度样品的测定值有显着性差异即为检出限(D.L)。这里的零浓度样品是不含待测物质的样品。
D.L = 4.6σ
式中:
σ— 空白平行测定(批内)标准偏差(重复测定20次以上)。
2)国际纯粹和应用化学联合会(IUPAC)对分析方法的检出限D.L作如下规定。
在与分析实际样品完全相同的条件下,做不加入被测组分的重复测定(即空白试验),测定次数尽可能多(试验次数至少为20次)。
算出空白观测值的平均值Xb和标准偏差Sb。在一定置信概率下,被检出的最小测量值XL以下式确定:
XL= Xb+ K’Sb
式中:
Xb—— 空白多次测得信号的平均值;
Sb—— 空白多次测得信息的标准偏差;
K’—— 根据一定置信水平确定的系数。
与XL-Xb(即K’ Sb)相应的浓度或量即为检出限:
D.L = XL- Xb/ K = k’Sb/ K
式中:
k——方法的灵敏度(即校准曲线的斜率)。为了评估Xb和Sb,实验次数必须至少20次。
1975年,IUPAC建议对光谱化学分析法取k’=3。由于低浓度水平的测量误差可能不遵从正态分布,且空白的测定次数有限,因而与k’=3相应的置信水平大约为90%。
此外,尚有将K’取为4、4.6、5及6的建议。
3)美国EPASW-846中规定方法检出限:MDL=3.143δ(δ重复测定7次)
4)在某些分光光度法中,以扣除空白值后的与0.01吸光度相对应的浓度值为检出限。
5)气相色谱分析的最小检测量系指检测器恰能产生与噪声相区别的响应信号时所需进入色谱柱的物质的最小量,一般认为恰能辨别的响应信号,最小应为噪声的两倍。最小检测浓度系指最小检测量与进样量(体积)之比。
6)某些离子选择电极法规定:当校准曲线的直线部分外延的延长线与通过空白电位且平行于浓度轴的直线相交时,其交点所对应的浓度值及为该离子选择电极法的检出限。
光度分析中,虽然吸光度最小测读值为0.001,灵敏度也以A=0.001所相应的被测物浓度表示,但实际上惯常以A=0.05相应的被测物浓度作为有充分置信度的测定限,即最小能够可靠测定的浓度。这是因为,在吸光度A接近零的情况下,测定值与真实值之比即相对误差趋向无限大。
其次,由于比色皿的成对性不易做到完全匹配,尤其是使用已久的比色皿的成对性不易保证,因此吸光度很小的测量值在不同操作者、不同试验室之间常会不一致,除非操作者很有经验,十分注意比色皿成对性对测量的影响,并在每次测量时予以试验校正。
测定限
测定限为定量范围的两端,分为测定上限与测定下限。
1测定下限
在测定误差能满足预定要求的前提下,用特定方法能准确地定量测定待测物质的最小浓度或量,称为该方法的测定下限。
测定下限反映出分析方法能准确地定量测定低浓度水平待测物质的极限可能性。在没有(或消除了)系统误差的前提下,他受精密度要求的限制(精密度通常以相对标准偏差表示)。分析方法的精密度要求越高,测定下限高于检出限越多。
美国EPASW-846中规定4MDL为定量下限(RQL),即4倍检出限浓度作为测定下限,其测定值的相对标准偏差约为10%。日本JIS规定定量下限为10倍的MDL。
2测定上限
在限定误差能满足预定要求的前提下,用特定方法能够准确地定量测定待测物质的最大浓度或量,称为该方法的测定上限。
对没有(或消除了)系统误差的特定分析方法的精密度要求不同,测定上限也将不同。
测定限对于定量分析,进一步计算才能得到与分析物有关的值(例如,各个结果的平均值)。因此,条件更加苛刻,所以测定限总是高于检出限。
3检测限有三种常用的表示方式
(1)仪器检测下限
可检测仪器的最小讯号,通常用信噪比来表示,当信号与噪声之比大于等于3时,相当于信号强度的试样浓度,定义为仪器检测下限。
(2)方法检测下限
即某方法可检测的最低浓度。通常用低浓度曲线外推法可求的方法检测下限。
(3)样品检测下限
即相对于空白可检测的样品最小含量。样品检测下限定义为:其信号等于测量空白溶液的信号的标准偏差的3倍时的浓度。
检测下限是选择分析方法的重要因素。样品检测下限不仅与方法检测下限有关,而且与空白样品中空白含量以及空白波动情况有关。只有当空白含量为零时,样品检测下限等于方法检测下限。
然而,空白含量往往不等于零,空白大小受环境对样品的污染,试剂纯度、水质纯度、容器的质地及操作等因素的影响。因此,由外推法可求得方法检测下限可能很低,但由于空白含量的存在,以及空白含量的波动,样品检测下限可能要比方法检测下限大得多。从实用中考虑,样品检测下限较为 有用和切合实际。
最佳测定范围
1最佳测定范围(也称有效测定范围)
指在限定误差能满足预定要求的前提下,特定方法的测定下限至测定上限之间的浓度范围。在此范围内能够准确地定量测定待测物质的浓度或量。
最佳测定范围应小于方法的适应范围。对测量结果的精密度(通常以相对标准偏差表示)要求越高,相应的最佳测定范围越小。
2方法的线性范围
方法的线性范围是指信号与样品浓度呈线性的工作曲线直线部分。通常把相当于10倍空白的标准偏差相应的浓度定为方法的线性范围的定量检测下限。取工作曲线中高浓度时,弯曲处作为方法的线性范围的定量检测上限。
好的分析方法要有宽的线性范围。有的分析方法线性范围只有一个数量级,有的分析方法线性范围可达5~6个数量级。同一分析方法可用常量、微量、痕量的物质分析。
校准曲线
校准曲线包括标准曲线和工作曲线,前者用标准溶液系列直接测量,没有经过预处理过程,这对于样品往往造成较大误差;而后者所使用的标准溶液经过了与样品相同的消解、净化、测量等全过程。
凡应用校准曲线的分析方法,都是在样品测得信号值后,从校准曲线上查得其含量(或浓度)。因此,绘制准确的校准曲线,直接影响到样品分析结果的准确与否。此外,校准曲线也确定了方法的测定范围。
1校准曲线的绘制
用一系列被测物标准溶液,按照标准方法规定的步骤,将被测物转变为有色溶液。制备好的标准系列和空白,在方法选定的波长下,测定吸光度。已被测物浓度为横坐标,吸光度为纵坐标,绘制校准曲线。
对标准系列,溶液以纯溶剂为参比进行测量后,应先作空白校正,然后绘制标准曲线。
标准溶液一般可直接测定,但如试样的预处理较复杂致使污染或损失不可忽略时,应和试样同样处理后再测定。
校准曲线的斜率常随环境温度、试剂批号和贮存时间等实验条件的改变而变动。
因此,在测定试样的同时,绘制校准曲线最为理想,否则应在测定试样的同时,平行测定零浓度和中等浓度标准溶液各两份,取均值相减后与原校准曲线上的相应点核对,其相对差值根据方法精密度不得大于5%~10%,否则应重新绘制校准曲线。
2校准曲线的检验
1)线性检验: 即检验校准曲线的精密度。对于以4~6个浓度单位所获得的测量信号值绘制的校准曲线,分光光度法一般要求其相关系数 | r | ≥0.9990,否则应找出原因并加以纠正,重新绘制合格的校准曲线。
2)截距检验:即检验校准曲线的准确度,在线性检验合格的基础上,对其进行线性回归,得出回归方程 y= a+bx ,然后将所得截距a与0作t检验,当取95%置信水平,经检验无显着性差异时,a可做0处理,方程简化为y= bx,移项得x=y/b。在线性范围内,可代替查阅校准曲线,直接将样品测量信号值经空白校正后,计算出试样浓度。
当a与0有显着性差异时,表示校准曲线的回归方程计算结果准确度不高,应找出原因予以校正后,重新绘制校准曲线并经线性检验合格。在计算回归方程,经截距检验合格后投入使用。
回归方程如不经上述检验和处理,就直接投入使用,必将给测定结果引入差值相当于解决a的系统误差。
3)斜率检验: 即检验分析方法的灵敏度,方法灵敏度是随实验条件的变化而改变的。在完全相同的分析条件下,仅由于操作中的随机误差导致的斜率变化不应超出一定的允许范围,此范围因分析方法的精度不同而异。例如,一般而言,分子吸收分光光度法要求其相对差值小于5%,而原子吸收分光光度法则要求其相对差值小于10%等等。
3校准曲线的控制
被测物转变为有色溶液的反应称为显色反应或发色反应。显色反应的介质PH条件、显色剂用量、显色反应的时间和温度、为消除共存物干扰而加入的掩蔽剂、甚至加试剂的顺序,都要按照方法步骤的要求执行。有时,标准系列虽然不像实际试样那样组成复杂,但仍要求与试样进行同样的处理步骤,以便控制校准曲线上的数据点的空白、回收率等因素。
建立校准曲线时,测量吸光度的参比有两种选择。
第一种方法用纯溶剂作参比,两个比色皿都放溶剂时,“样品比色皿” 的吸光度测定值为比色皿成对性校正值,此后所有样品吸光度测定值都须扣除此值,进行校正。然后,以纯溶剂为参比,测定空白及标准系列的吸光度,绘制校准曲线。
第二种方法直接用空白为参比。当两个比色皿都放空白时,测定比色皿成对性校正值,然后测定标准系列的吸光度,绘制校准曲线。两种方法得到的两条校准曲线互相平行,但第一种方法可测定空白的水平,后一种方法不能测定空白,理论上校准曲线通过原点。若空白为零,两条校准曲线重合。无论用什么作参比,实样测定时应该使用与建立校准曲线相同的比色皿和同样的参比。
比色皿的成对性校正对于使用已久的比色皿是必要的,尤其是测量吸光度很小的样品时,校正可保证测量值的可靠性和重复性。
一.分析空白的主要来源和控制措施
1环境对样品的玷污
主要是由空气中的污染气体和沉降微粒引起的。普遍实验室中每立方米空气中含有数百微克的微粒。这些微粒含有多种元素,因而可引起多种和痕量元素的玷污。来自环境的玷污不但显着,而且变动性大。应采取局部或整个实验室的防尘与空气净化措施。
2试剂对样品的玷污
试剂对样品的玷污随试剂用量而变化。对一定的试剂用量是恒定的。样品处理过程中用量最多的是水和酸。
3器皿对样品玷污
贮存、处理样品所用的一切器皿,如烧杯、瓶子、过滤器、研钵等,由于其材质不够纯或者未洗涤干净均可能玷污样品。在痕量分析中应选用高纯惰性材料制成的器皿, 并运用合适的清洗技术。聚四氟乙烯、透明的合成石英的高压聚乙烯是比较合适的器皿材料。
4分析测试者对样品的玷污
分析测试者用手触摸样品可引起多种元素的玷污;分析测试者的化妆品常常不知不觉地带来许多元素的玷污;分析测试者使用的内服和外用药物也常常玷污样品;以及分析测试者若不注意个人卫生也会引起样品的玷污。所以,分析测试者不但要具有正确熟练的操作技巧,而且要知道自身对样品可能带来什么玷污,以采取消除玷污的必要措施。
二.分析空白的监测和空白值的扣除
空白值波动较大,往往在百分之几十,甚至百分之几百的水平上波动。因而痕量与超痕量分析中,扣除空白是比较困难的,也是不可靠的。可靠并行之有效的方法是把分析空白降至可以忽略不记的程度,同时在分析过程中作空白的平行测定,以监视分析过程。若分析空白明显的超过正常值,则表明本次分析测定过程有严重的玷污,平行样品的测定结果不可靠。
在分析空白主要来自试剂的玷污时,空白值比较稳定,若有必要,可以扣除空白值。为获得可靠的空白值,应进行多次重复测定,算出空白值及其置信限:B ±t0.95(SB/n2)。
答案来自
㈢ 常用生化检测项目分析方法举例及参数设置
常用生化检测项目分析方法举例及参数设置
常用生化检测项目有哪些你知道吗?你对常用生化检测项目了解吗?下面是我为大家带来的关于常用生化检测项目分析方法举例及参数设置的知识,欢迎阅读。
一、常用生化检测项目
1.终点法检测常用的有总胆红素(氧化法或重氮法)、结合胆红素(氧化法或重氮法)、血清总蛋白(双缩脲法)、血清白蛋白(溴甲酚氯法)、总胆汁酸(酶法)、葡萄糖(葡萄糖氧化酶法)、尿酸(尿酸酶法)、总胆固醇(胆固醇氧化酶法)、甘油三酯(磷酸甘油氧化酶酶法)、高密度脂蛋白胆固醇(直接测定法)、钙(偶氮砷Ⅲ法)、磷(紫外法)、镁(二甲苯胺蓝法)等。以上项目中,除钙、磷和镁基本上还使用单试剂方式分析因而采用一点终点法外,其它测定项目都可使用双试剂故能选用两点终点法,包括总蛋白、白蛋白测定均已有双试剂可用。
2.固定时间法苦味酸法测定肌酐采用此法。
3.连续监测法对于酶活性测定一般应选用连续监测法,如丙氨酸氨基转移酶、天冬氨酸氨基转移酶、乳酸脱氢酶、碱性磷酸酶、γ谷氨氨酰基转移酶、淀粉酶和肌酸激酶等。一些代谢物酶法测定的项目如己糖激酶法测定葡萄糖、脲酶偶联法测定尿素等,也可用连续监测法。
4.透射比浊法透射比浊法可用于测定产生浊度反应的项目,多数属免疫比浊法,载脂蛋白、免疫球蛋白、补体、抗"O"、类风湿因子,以及血清中的其他蛋白质如前白蛋白、结合珠蛋白、转铁蛋白等均可用此法。
二、分析参数设置
分析仪的一些通用操作步骤如取样、冲洗、吸光度检测、数据处理等,其程序均已经固化在存储器里,用户不能修改。各种测定项目的分析参数(analysisparamete)大部分也已设计好,存于磁盘中,供用户使用;目前大多数生化分析仪为开放式,用户可以更改这些参数。生化分析仪一般另外留一些检测项目的空白通道,由用户自己设定分析参数。因此必须理解各参数的确切意义。
一、分析参数介绍
(一)必选分析参数
这类参数是分析仪检测的前提条件,没有这些参数无法进行检测。
1.试验名称 试验名称(test code)是指测定项目的标示符,常以项目的英文缩写来表示。
2.方法类型(也称反应模式) 方法类型(assay)有终点法、两点法、连续监测法等,根据被检物质的检测方法原理选择其中一种反应类型。
3.反应温度 一般有30℃、37℃可供选择,通常固定为37℃。
4.主波长 主波长(primary wavelength)是指定一个与被测物质反应产物的光吸收有关的波长。
5.次波长 次波长(secondary wavelength)是在使用双波长时,要指定一个与主波长、干扰物质光吸收有关的波长。
6.反应方向 反应方向(response direction)有正向反应和负向反应两种,吸光度增加为正向反应,吸光度下降为负向反应。
7.样品量 样品量(sampling volum)一般是2μl~35μl,以0.1μl步进,个别分析仪最少能达到1.6μl。可设置常量、减量和增量。
8. 第一试剂量 第一试剂量(first regengt volum)一般是20~300μl,以1μl步进。
9. 第二试剂量 第二试剂量(second regengt volum)一般也是20~300μl,以1μl步进。
10.总反应容量 总反应容量(total reacting volum)在不同的分析仪有一个不同的规定范围,一般是180~350μl,个别仪器能减少至120μl。总反应容量太少无法进行吸光度测定。
11.孵育时间 孵育时间(incubate time)在终点法是样品与试剂混匀开始至反应终点为止的时间,在两点法是第一个吸光度选择点开始至第二个吸光度选择点为止的时间。
12.延迟时间 延迟时间(delay time)在连续监测法中样品与反应试剂(第二试剂)混匀开始至连续监测期第一个吸光度选择点之间的时间。
13.连续监测时间 连续监测时间(continuous monitoring time)在延迟时间之后即开始,一般为60~120s,不少于4个吸光度检测点(3个吸光度变化值)。
14.校准液个数及浓度 校准曲线线性好并通过坐标零点的,可采用一个校准液(calibrator);线性好但不通过坐标零点,应使用两个校准液;对于校准曲线呈非线性者,必须使用两个以上校准液。每一个校准液都要有一个合适的浓度。
15.校准K值或理论K值 通过校准得到的K值为校准K值(calibrate coefficient)或由计算得出的K值为理论K值。
16.线性范围 即方法的线性范围(linearity range),超过此范围应增加样品量或减少样品量重测。与试剂/样品比值有关。
17.小数点位数 检测结果的小数点位数(decimal point digit)。
(二)备选分析参数
这类分析参数与检测结果的准确性有关,一般来说不设置这类分析参数,分析仪也能检测出结果,但若样品中待测物浓度太高等,检测结果可能不准确。
1.样品预稀释 设置样品量、稀释剂量和稀释后样品量三个数值,便可在分析前自动对样品进行高倍稀释。
2.底物耗尽值 底物耗尽值(substrate exhaust limit)在负反应的酶活性测定中,可设置此参数,以规定一个吸光度下降限。若低于此限时底物已太少,不足以维持零级反应而导致检测结果不准确。
3.前区检查 免疫比浊法中应用,以判断是否有抗原过剩。将终点法最后两个吸光度值的差别(ΔA)设置一个限值,如果后一点的吸光度比前一点低,表示已有抗原过剩,应稀释样品后重测。
4.试剂空白吸光度范围 超过此设定范围表示试剂已变质,应更换合格试剂。
5.试剂空白速率 连续监测法中使用,是试剂本身在监测过程中没有化学反应时的变化速率。
6.方法学补偿系数 用于校准不同分析方法间测定结果的一致性,有斜率和截距两个参数。
7.参考值范围 对超过此范围的测定结果,仪器会打印出提示。
(三)某些参数的特殊意义
1.最小样品量 最小样品量是指分析仪进样针能在规定的误差范围内吸取的最小样品量。一般分析仪的最小样品量是2μl,目前也有小至1.6μl的。在样品含高浓度代谢产物或高活性酶浓度的情况下往往需采用分析仪的最小样品量作为减量参数,从而使分析仪检测范围(与线性范围不同)的上限得以扩大。
2.最大试剂量 方法灵敏度很高而线性上限低的检测项目,如血清白蛋白的溴甲酚氯法测定,以往手工法操作时样品量10μl,试剂量4ml,这样试剂量/样品量比例(R/S)为200,线性上限则为60g/L。此法移植到分析仪上后,R/S却很难达到200,致使线性上限变低。因此对这类检测项目最大试剂量非常重要。
3.弹性速率 在酶活性测定中,当酶活性太高,在连续监测期中已不呈线性反应时,有些仪器具有弹性速率(flexrate)功能,能自动选择反应曲线上连续监测期中仍呈线性的吸光度数据计算结果,使酶活性测定的线性范围得以扩大。如AST可从1000U/L扩展至4000U/L,从而减少稀释及重测次数、降低成本。
4.试剂空白速率 当样品中存在胆红素时,胆红素对碱性苦味酸速率法或两点法测定肌酐有负干扰。因为胆红素在肌酐检测的波长505nm有较高光吸收,而且胆红素在碱性环境中可被氧化转变,因而在肌酐反应过程中胆红素的光吸收呈下降趋势。若在加入第一试剂后一段时间内设置试剂空白速率,因为此段中苦味酸尚未与肌酐反应,而胆红素在第一试剂的碱性环境中已同样被氧化转变,因而以第二试剂加入后的速率变化,减去试剂空白速率变化,便可消除胆红素的负干扰,见图7-8。
二、单波长和双波长方式
(一)概念
采用一个波长检测物质的光吸收强度的`方式称为单波长(mono-wavelength)方式。当反应液中含有一种组分,或在混合反应液中待测组分的吸收峰与其它共存物质的吸收波长无重叠时,可以选用。在吸光度检测中,使用一个主波长和一个次波长的称双波长方式。当反应液中存在干扰物的较大吸收、从而影响测定结果的准确性时,采用双波长方式更好。
(二)双波长的作用
双波长(di-wavelength)测定优点是①消除噪音干扰;②减少杂散光影响;③减少样品本身光吸收的干扰。从光源,到比色杯、单色器、检测器的整个光路系统中,均存在着随时间发生变化的不稳定的检测信号,即噪音,而双波长检测是同时进行的,两种波长检测产生的噪音基本上相同,因而能消除噪音干扰。当样品中存在非化学反应的干扰物如甘油三酯、血红蛋白、胆红素等时,会产生非特异性的光吸收,而干扰测定结果的准确性。采用双波长方式测定可以部分消除这类干扰,提高检测的准确性。
(三)次波长的确定方法
当被测物的主波长确定之后,再选择次波长。如根据甘油三酯等干扰物吸收光谱特征,选择次波长,使干扰物在主、次波长处有尽可能相同的光吸收值,而被测物在主、次波长处的光吸收值应有较大的差异。一般来说,次波长应大于主波长100nm。以主波长与次波长吸光度差来计算结果。
(四)双波长的具体应用
对于某些反应速度快且无法设置为两点终点法的分析项目,尤其是单试剂分析中,可以利用双波长的方式来部分消除样品本身的光吸收干扰。目前用单试剂法测定的项目应用双波长的为血清总蛋白(双缩脲法)主波长500nm,次波长576nm;血清白蛋白(溴甲酚氯法)主、次波长分别为600和700nm;钙(偶氮砷Ⅲ法)主、次波长分别为 660、770nm;磷(紫外比色法)主、次波长为340、405nm,镁(二甲苯胺蓝法)主、次波长为505和 600nm。
三、单试剂和双试剂方式
反应过程中只加一次试剂称单试剂方式,加两次试剂便为双试剂方式。目前的生化分析仪大多可用双试剂方式分析,其优点是:①可提高试剂的稳定性,多数双试剂混合成单一工作试剂时,其稳定时间缩短;②能设置两点终点法,来消除来自样品本身的光吸收干扰;③在某些项目检测时能消除非特异性化学反应的干扰。如血清ALT测定,血清中的内源性丙酮酸及其它酮酸也可与试剂中的指示酶(乳酸脱氢酶)起反应,使结果偏高。若先加入缺乏α-酮戊二酸的第一试剂,使其它酮酸与指示酶反应之后再加入含有α-酮戊二酸的第二试剂,启动真正的ALT酶促反应生成丙酮酸,而丙酮酸与乳酸脱氢酶的反应消耗的NAD+能真正反映ALT的活性,从而消除以上副反应的影响。
四、测定过程的自动监测
各种自动生化分析仪或多或少都具有对测定过程进行各种监测的功能,以便在没有人"监督"化学反应的情况下提高检测的准确性。高档分析仪的监测功能更强。
1.试剂空白监测 每种试剂都有一定的空白吸光度范围,试剂空白吸光度的改变往往提示着该试剂的变质:如利用Trinder反应为原理的检测试剂会因酚被氧化为醌而变为红色;碱性磷酸酶、γ-谷氨酰转移酶、淀粉酶等检测试剂会因基质分解出硝基酚或硝基苯胺而变黄;有些试剂久置后变浑浊。这些情况均可使空白吸光度升高。丙氨酸氨基转移酶、天冬氨酸氨基转移酶等负反应检测项目,其试剂在放置过程中空白吸光度会因NADH自行氧化为NAD+而下降等。
试剂空白的测定方法有两种:①每瓶试剂在使用前通过对试剂空白校准来确定试剂空白吸光度,这种方式适用于先取样品后加试剂的分析仪。②每个样品测定前均检测试剂空白吸光度,适用于先加试剂后取样品的分析仪。
2.试剂空白变化速率监测 一些酶试剂在反应温度下不稳定,其空白吸光度可随着时间逐渐发生变化,这种变化的主要原因与工具酶或辅酶的纯度有关,且因试剂的组成和生产厂家的不同而不同。这种变化会影响测定结果的准确性,一般使结果偏高。如果设置此项监测,分析仪在结果计算时会自动减去试剂空白变化速率。在以监测NAD(P)H减少为指示反应的酶活性测定中,空白速率可监测并消除由NADH自身氧化所造成的吸光度下降;在色素原为底物的酶活性测定中,空白速率可监测并消除底物自身分解造成的吸光度升高。有关空白速率监测在胆红素对碱性苦味酸速率法测定肌酐负干扰消除中的作用,已如前述。
3.样品信息监测 由于样品的溶血、脂浊、黄疸会对测定结果产生非化学反应的干扰。根据溶血、脂浊、黄疸的光谱吸收特性,用双波长或多波长检测其性质和程度,一般是测定样品在600nm/570nm、700nm/660nm和505nm/480nm吸光度比值的大小来分别判断样品溶血、脂浊和黄疸程度。然后在结果计算时自动减去这部分干扰,这将有利于提高分析结果的可靠性。
4.结果可靠性监测
(1)终点监测:终点法测定要判断所选的测光点是否到达终点或平衡点。一些分析仪在所选终点后再选一个测光点,比较这两点吸光度的差异来判断反应是否到达终点。
(2)线性期监测:连续监测法选择时间-吸光度反应曲线上的线性期来计算酶活性或被测物浓度,因此仪器要确定此连续监测期是否呈线性。其监测方法为①将连续监测到的各吸光度值进行线性回归,计算出各点的方差,根据方差值的大小来判断是否呈线性;②取连续监测期开始若干点的变化速率与连续监测期最后若干点的变化速率进行比较,来判断是否为线性期。
5.底物消耗的监测 在连续监测法测定酶活性时,如果在监测期内吸光度上升或下降超过其底物耗尽值,则说明该样品酶活性非常高,底物将被耗尽,监测期的吸光度将偏离线性,使测定结果不可靠。此时不打印结果或打印结果同时也打印出底物耗尽提示,该样品应稀释一定的倍数重新测定。此监测对于采用负反应分析酶活性的方法甚为重要。见图7-9
6.方法线性范围监测 每种待测物分析都有一个可测定的浓度或活性范围,样品结果若超过此范围,分析仪将显示测定结果超过线性范围的提示,多数分析仪会自动将样品减量或增量重新测定。
;㈣ 自动生化参数的选择线性范围
自动生化分析仪参数设置
自动生化分析仪是一种把生化分析中的取样、加试剂、去干扰物、混合、恒温反应、自动监测、数据处理以及实验后清洗等步骤进行自动化操作的仪器,它完全模仿并代替了手工操作,目前已经成为医疗机构进行临床诊断所必可不少的仪器之一。它的应用大大提高了生化检验的准确性、精密度和工作效率,适应了临床医学发展对检验医学的要求,然而这一切不仅需要生化分析仪的技术基础,也需要仪器内每个项目都有一组最优化的分析参数。并且目前大多数生化分析仪为开放式,封闭式的仪器一般也会另外留一些检测项目的空白通道由用户自己设定分析参数,因此我们有必要了解生化分析仪各个分析参数的基本含义以及设置方法。
1.试验名称常以项目的英文缩写来设置,如总蛋白设置为TP,白蛋白设置为ALB等。 2.方法类型生化分析仪常用的方法有终点法、连续监测法、比浊法等,根据被检物质的检测原理等选择其中一种分析方法。
2.1终点法又称为平衡法,是基于反应达到平衡时反应产物的吸收光谱特征及其对光吸收强度的大小对物质进行定量分析的一类方法,有一点终点法和两点终点法两类。一点终点法的特点是使用一种或两种试剂,当待测物与试剂反应达到终点时,测定混合溶液的吸光度来计算待测物的浓度,该法常用的有总蛋白双缩脲法、白蛋白溴甲酚绿法、葡萄糖氧化酶法等,手工操作的大多数方法都是一点终点法。两点终点法也称固定时间法,如果是单试剂分析,当测定波长同干扰物质的吸收光谱有重叠时,通过选用两点终点法可消除样品空白引起的干扰,其分析过程是在样品与试剂混合后经过一段延滞期读取一个点A1,一定时间后再读取A2,然后比较标准和测定的ΔA(ΔA=A2-A1)值,求得待测物的浓度。肌酐苦味酸法就是一个典型的单试剂两点法的例子。如果是双试剂分析,选用二点终点分析法除了可消除样品空白引起的干扰外,还可消除内源性干扰物质的干扰,其分析过程是加入试剂1后读取A1,加入试剂2后读取A2,A1相当于读出样品空白值,A2才是实际呈色反应,然后比较标准和测定的ΔA(ΔA=A2-A1)值,求得待测物的浓度。为了提高终点法检测的准确性,选择该法时应设置终点法零点读数、样品空白等两个分析参数,前者是在反应前即开始读数,可以扣除反应前试剂和样品混合液的空白读数;后者是样品加空白试剂所得到的吸光度,反应需要占用一个比色杯。
2.2连续监测法又称动态分析法、速率法等,基本原理是在酶促反应的最适条件下,用物理、化学或酶促反应的分析方法,在反应速度恒定期(零级反应期)内连续观察和记录一定反应时间内底物或产物量的变化,以单位时间酶反应初速度计算出酶活力的大小和代谢物的浓度。具体方法有两点速率法和多点速率法:两点速率法是通过观察在零级反应期内两个时间点的吸光度,用两个点的吸光度的差值(ΔA)除以时间(分),计算出每分钟的吸光度变化值;多点速率法是在零级反应期内每隔一定时间(2-30s)进行一次监测,连续监测多次,求出单位时间内的反应速度,这种方法又可分为最小二乘法、多点δ法、回归法、带速率时间法等。该法具有明显的优点就是大大提高了分析速度和准确性,主要适用于酶活性及其代谢产物的测定。在连续监测法过程中,即使不加样品,试剂中的底物也会自动降解得到一个结果,因此应设置试剂空白速率,不同批号试剂的试剂空白速率不一样,其值为以水代样品测得的项目结果,样品测定结果应扣除试剂空白速率的数值。
2.3比浊法自动生化分析仪一般只能做透射免疫比浊分析,当光线通过一定体积的含免疫复合物的溶液时,由于溶液中存在的抗原-抗体复合物粒子对光线的反射和吸收,引起透射光的减少,测定的光通量和抗原抗体复合物的量成反比。它常用于终点法测定,目前主要用于血清特种蛋白的检测,如载脂蛋白、微量蛋白、急性时相反应蛋白、免疫球蛋白以及某些药物监测等。但是如果样品中待测抗原浓度过高,抗原与抗体形成的免疫复合物分子将会
var script = document.createElement('script'); script.src = 'http://static.pay..com/resource/chuan/ns.js'; document.body.appendChild(script);
void function(e,t){for(var n=t.getElementsByTagName("img"),a=+new Date,i=[],o=function(){this.removeEventListener&&this.removeEventListener("load",o,!1),i.push({img:this,time:+new Date})},s=0;s< n.length;s++)!function(){var e=n[s];e.addEventListener?!e.complete&&e.addEventListener("load",o,!1):e.attachEvent&&e.attachEvent("onreadystatechange",function(){"complete"==e.readyState&&o.call(e,o)})}();alog("speed.set",{fsItems:i,fs:a})}(window,document);
变小,而且易发生解离,使浊度反而下降,因此免疫比浊分析过程中必须设置前区检查,比较分析过程中后两个读数点的差别,如果后一点比前一点的吸光度低,则表示抗原已过剩,应将样品稀释后重测。
3.反应温度自动生化分析仪通过温度控制系统保持温度恒定,以保证反应的正常进行,其保持恒温的方式有三种:干式恒温器加热、水浴式循环加热、恒温器循环间接加热。恒温控制器可以对25℃、30℃、37℃三种温度进行恒温,根据需要可以任意选择,半自动生化分析仪恒温器属于这种。全自动生化分析仪的温度控制器一般只能控制37℃一种温度,少数也可以控制30℃和37℃两种温度。
4.反应波长当测定体系中只有一种组分或混合溶液中待测组分的吸收峰与其他共存物质的吸收波长无重叠时,可选用单波长,如果待测物质有几个吸收峰,可选用吸光度最大的一个波长,或者选择在吸收峰处吸光度随波长变化较小的某个波长。当被检溶液混浊或存在较多的干扰物质时,测定过程中会出现光散射和非特异性光吸收,从而影响测定结果的准确性,此时可用双波长甚至多波长测定,以提高测定结果的准确性,而在实际应用中选择辅助波长主要用于消除脂血、溶血、黄疸的干扰。由于脂质、血红蛋白、胆红素在较宽的波长范围内有较强的光吸收,常常同测定波长有重叠,此时测得的吸光度包含待测物质的吸光度和干扰物质的吸光度,因此必须选用合适的辅助波长来消除干扰物质的吸光度。辅助波长的设置原则是根据测定波长选择辅助波长,要求干扰物质在测定波长同辅助波长有相同的吸光度。
5.反应方向有正向反应和负向反应两种,反应过程中吸光度增加为正向反应,吸光度下降为负向反应。
6.样品量与试剂量样品与试剂量的确定一般按照试剂说明书上的比例,并结合仪器的特性进行设置,亦可根据手工法按比例缩减或重新设计,但要考虑到检测灵敏度、线性范围,尽可能将样品稀释倍数大些,以降低样品中其他成分的影响。在样品与试剂量的设置过程中主要应注意以下几个方面:①稀释水量,添加样品稀释水的是为了洗出粘附在采样针内壁上的微量血清,减少加样误差,添加试剂稀释水是为了避免试剂间的交叉污染,两种稀释水的量应在复溶试剂时按比例扣除。如果采用液体试剂盒时因不再用水,无法扣除稀释水量,所以两种稀释水应尽量减少,以免试剂被过量稀释。②最小样品量,即分析仪进样针能在规定的误差范围内吸取的最小样品量,随着技术的不断改进,仪器的最小样品量逐渐减小,目前有少至1.6μl的。在样品含高浓度代谢产物或高活性酶浓度的情况下往往需采用分析仪的最小样品量作为减量参数,从而使仪器的检测范围上限得以扩大。③总反应容量,在不同的分析仪有一个不同的规定范围,在设置的时候样品量和试剂量之和不能超过这一范围。该值受仪器的光路系统所影响,直射式光路由于光束较宽,难于减少所测试反应液体积,集束式光路则是通过一个透镜使光束变窄,可检测低至180μl的反应液混合体,近年来又出现了点光源技术,它的光束更小,照射到样品杯时仅为一个点,可使反应液的量降至120μl.④试剂量/样品量比值,不要为节省试剂而过分地减少试剂用量,因为在终点比色法中,缩小试剂量/样品量比值会降低线性范围,遇高浓度样本会因试剂量不足而使结果偏低。
7.分析时间分析时间包括孵育时间、延迟时间、监测时间等,选择不同的分析方法应选择相应的分析时间。
7.1孵育时间选择终点法时设置,在一点终点法是样品与试剂混匀开始至反应终点为止的时间,在两点终点法是第一个吸光度选择点开始至第二个吸光度选择点为止的时间。在设置孵育时间时,有些分析方法要特别注意,如选择溴甲酚绿法测定血清白蛋白时,由于血清中α1-球蛋白、转铁蛋白等也可与溴甲酚绿呈色,尽管其反应速率较白蛋白为慢,但是实际上当血清与白蛋白混合时,“慢反应”已经发生,因此为减少非特异性结合反应,应在溴甲酚绿与血清混合后30s读取吸光度。当选择酶法的Trinder反应测定葡萄糖、总胆固醇、甘
var cpro_psid ="u2572954"; var cpro_pswidth =966; var cpro_psheight =120;
油三酯时,由于37℃酶反应较慢,因此必须测定这些酶试剂反应达到终点的时间,自动分析仪用试剂盒一般可以在全部加样后5分钟内反应完全,所以应选择分析仪的最大反应时间。
7.2延迟时间选择连续监测法或两点终点法时设置,即在样品与反应试剂(第二试剂)混匀开始至第一个吸光度选择点之间的时间。在连续监测法过程中,当酶与底物混合后需要一定的时间让酶激活,直至线性反应期才能开始监测,有的项目需要用工具酶将内源性代谢产物耗尽,消除干扰。一般单试剂法只需要30s,常用项目中谷氨酸氨基转移酶、天冬氨酸氨基转移酶需要特别注意,但是对于双底物反应或需要辅酶参与者,通常为1-3min.7.3监测时间酶促反应延滞期后,在过量底物的存在下,反应速率加快并达到稳定的阶段,即酶促反应以恒定的速率进行,不受底物浓度的影响,这段时间称为线性反应期或零级反应期,自动生化分析仪的监测时间即为此期。连续监测法在零级反应期至少应监测90-120s或至少4点(3个ΔA),少于3个ΔA不能称为连续监测法,因为不能计算线性度;监测时间过长则容易发生底物耗尽,可测范围变窄。医学教育网搜集整理。
8.计算因子(F值)和实测F值用连续监测法进行酶活性测定时,不需作标准管或标准曲线,根据摩尔吸光系数很容易进行酶活性浓度的计算。先测定在线性范围内每分钟吸光度的变化(ΔA/min),以U/L代表酶活性浓度时,则可按下式进行计算: U/L,t℃=△A/min×F==△A/min×V×106/(ε×V×L)
式中V:反应体系总体积(ml);106:将mol换算成μmol;ε:摩尔吸光系数(cm2/mol);v:样品体积(ml);L:比色杯光径(cm)。当条件固定时,从理论上讲V、v和L均为固定值,ε值为常数,所以F值是恒定的。F值对酶的测定十分重要,过高虽然测定的线性较宽,但重复性差,反之精密度虽好,但检测线性窄,因此应根据实际情况进行合理的设置和应用。但是在临床实际工作中,仪器诸多因素如波长的准确性、半波宽的大小、比色杯光径及磨损与清洁度、温控的准确性、加样系统状况等若不符合要求或发生变化都会影响指示物的ε值或上述公式中的相关项,因此应在具体仪器条件下,定期检查和实际测定指示物的实测ε值和F值。因为纯NAD(P)H溶液不稳定,所以NAD(P)H的ε值需用葡萄糖己糖激酶法实测,实际操作为将某一浓度的葡萄糖溶液重复5-10次测定,得到相应的一组吸光度A值,求出Aˉ±s,注意s必须低于规定的批内允许值,再根据下面两个公式分别计算出NAD(P)H的实测ε值和F值:
式中C为标准液浓度(mol/L)。其他一些色素源指示物在不同的介质环境中,其ε值会发生程度不等的变化,对5-硫代-2-硝基苯甲酸、对硝基苯酚、对硝基苯胺等这些可得到高纯而稳定的指示物,可将其配制在一定的介质中,按临床标本用的现场试剂和仪器测定吸光度求实测ε值及F值。
9.线性度是非线性比率的界线,常用%表示,其计算公式为,式中:k1为连续监测时间2/3内前读数时间的斜率,k2为后2/3读数时间的斜率,k3为总的斜率,一般设置为15%.对一些酶活性项目,可以适当放宽,当不需要设置检查界限时,设置其为0.线性百分数大,说明Δk之间已不成线性;超过极限值说明底物不足,检测结果会变低,应稀释后重测。 10.底物耗尽限额选择连续监测法或两点终点法时设置,不同型号分析仪的设计不一样,有的为零点与监测第一点吸光度的差额,有的为吸光度上升或下降至指定吸光度(MAX-OD/MIN-OD)的数值。超过限额说明样品的酶活性非常高,底物消耗太快,在仪器程序规定的线性反应期内吸光度的变化往往不代表真正的酶活力,导致结果偏低,该样品应稀释一定的倍数重新测定。
㈤ 线性范围如何确定为何线性范围越宽越好
采用校准曲线法定量,并至少具有6个校准点(包括空白),浓度范围尽可能覆盖一个或多个数量级,每个校准点至少以随机顺序重复测量2次,最好是3次或更多;对于筛选方法,线性回归方程的相关系数不低于0.98;对于准确定量方法,线性回归方程的相关系数不低于0.99;首先,线性范围不是越宽越好,线性范围的确定和被检测样品的浓度有关,待检样品的浓度落在线性范围内就可以了,其次是截距越小,用一点法计算越准确。
JL直线位移传感器有些用户在选型方面,不知道选啥样的,哪种型号才是适合自己的,在这里,精量电子科技小编要对这个问题给大家分享一下:首先要明白自己的测量工作,才可以考虑哪种原理的位移传感器适合,因为即使测量同一物理量,也可以通过不同的原理实现。其次就得考虑量程、空间是否足够、安装方式、模拟信号还是数字信号、直接测量还是间接测量等等多种因素。因为精度等级关乎到整个系统精度,是一个非常重要的参数。所以,精度越高,直线位移传感器的价格越贵。灵敏度指输出量的增量与相应的输入量增量之比。我们得正确认识该参数,它分为两方面:在线性范围内,灵敏度高,输出信号值比较大,这是优点。灵敏度高,与测量无关的外界噪声也容易混入,在处理过程中,影响精度。线形范围是指输出与输入成正比的范围,拉绳直线位移传感器都希望线性范围越宽越好,线性范围越宽,量程就大,精度就高。但是任何位移传感器的线性范围都是相对的。我们只需要把测量量估算好,以便在线性范围内。在测量过程中,位移传感器的输出总有一定的延迟,跟实际值也有一定的差别。所以我们希望频率响应快一点,这样延迟时间就短一点。但由于受到结构等特性的影响,频率也难以提高。综上所述就是JL直线位移传感器在选型是要注意的几个方面,也不是说价格越高,越适合自己,这要根据自己的实际情况而定,量程、空间、信号多个因素会为自己找到一款合适的传感器,有什么特殊要求,请及时联系小编或者技术人员,会为用户选择一款合适的传感器,期待大家的关注。
㈥ 评价一个仪器分析方法的分析特性一般从哪些方面考虑
方法检出限,评价检测方法的灵敏度。
重复性和再现性,评价方法的稳定性。
回收率和测量不确定度,评价方法的准确度。
线性范围,评价方法在什么浓度范围内可以对被测物准确定量。