㈠ 海水分析化学的采样分析
海水是一个复杂的多组分的多相体系,包括多种有机和无机的、溶解态的 和悬浮态的物质,其含量约为3.5%,其中各组分的含量相差悬殊。11种主要溶解成分在海水中占总盐分的99.99%,其他成分的含量均在百万分之一以下,其中大多数成分的含量都在痕量或超痕量的水平。
海水的这些特点,对海水分析带来很大的影响。例如:大量基体盐类对测定的影响,有机物及微生物的活动影响。多相体系是否分离,对分析也有影响,特别是在痕量或超痕量成分分析时,对分离、富集和测定的方法,都有具体的要求。
海水分析所面临的对象是广阔的海域,样品的数量很多,种类也不同(海水、微表层海水、间隙水等),要求分析方法和使用的仪器必须灵敏、简便、快速和适用于船上的工作条件,特别是建立能快速测定的现场自动分析仪器和方法。此外,采样技术的研究,样品贮存和防止沾污,海水分样方法的相互校准和规范化等,也都是十分重要的问题。
㈡ 海水中微量元素的分析方法主要有哪些
灵敏度足够高的海水微量元素的直接测定法不多,加上海水中有大量基体盐类存在,不易得到可靠的结果,常先用分离富集方法,消除干扰,并提高待测微量成分的浓度,然后进行测定。
富集分离法
常用的方法有:溶剂萃取法、离子交换法、共沉淀法和冻干法等。
①
溶剂萃取法。
例如吡咯烷基酸铵-甲基异丁基酮,可用于萃取海水中的镉、铜、镍、铅、锌、银、钴、铁等元素,供原子吸收光度法测定用。
②
离子交换法。纤维素交换法,可富集海水中的钴、铬、铜、铁、钼、镍、铅、锌、铀等元素,供X射线荧光法和中子活化法测定用;螯合树脂交换法,可富集镉、铬、铜、铁、锰、镍、铅、锌等元素,供原子吸收分光光度法测定用。
③
共沉淀法。用分光光度法、原子吸收法或中子活化法测定海水中微量元素之前,可用共沉淀法富集分离。例如用氢氧化铁为沉淀剂,分离海水中的砷、铕、镧、钌、锡、钽等成分之后,再用中子活化法测定它们的含量。
④
冻干法。可用于中子活化法测定海水中多种元素之前的富集,但不能分离出干扰元素。
㈢ 水质环境监测方法有哪些
1
颜色与透明度
水体根据污染物成分不同显示出各种颜色。常规水质检测主要根据水质颜色来推测出水中杂质的种类与数量。比如:粘土使水成黄色,硫化氢氧化析出的硫可以使水呈蓝色,各种水藻分别呈现出黄绿色以及褐色等。而水质的透明度表明水中杂质对透明光线的阻碍程度。如果透过水层腐蚀一方面白色或者黑色相见的圆盘,并调节圆盘深度直到能看到为止,这个时候圆盘所在的深度与位置标明其透明度。因此,可以通过标明的透明度来判断水质的状况。
2
微量成分
水质的微量成分主要以水质检测仪器来分析。其中主要包括原子吸收光谱法,气、液相色普法等离子发射光谱法。系统了解各种水质指标的含义具有非常关键性意义。对于任何水生生态系统环境都是通过严格选择的指标进行检测分析结果的。总之,水质的微量成分必须通过这些仪器进行检测。
3
氧化还原与电化学法
常规水质检测方法中最典型的就是氧化还原与电化学方法。有水的电导率,氧化与还原电位以及包括PH在内的离子选择电极的各种指标,比如许多金属离子等。多为溶解量以及氯离子含量为指标。
4
加热与氧化剂分解方法
该方法主要将含有生物体在内的有机化合物以及分解时候产生的二氧化碳的含量或者分解时候消耗氧气的含量等作为水质检测的指标。
5
温度与中和方法
其中温度是最常用的水质检测方法之一。因为水的许多物理特征以及水中进行的化学过程中与温度都息息相关。水源不同,其温度也不同,但是地表的温度与当地气候条件有关,其变化范围在1—30℃,而海水的温度变化范围在2—30℃;中和方法主要包括水体的酸度或者碱度进行水质检测。
6
固体含量
天然水中所含物质大部分属于固体物质,经常有必要测定器含量作为直接的水质检测标准,各种固体含量标准可以分为三类:其一,悬浮性固体。将水样过滤之后残留物烘干之后残存的固体物质量,也就是悬浮物质的含量。其二,总固体。水样在一定温度下可以蒸发干燥残存的固体物质总量,这可以作为常规水质检测标准之一。其三,统计性固体。溶解性固体主要包括荣誉水的有机物质以及无机盐,总固体含量是悬浮固体与溶解性固体之和。另外,各种固体含量的测定都是以重量进行的,测定的之后蒸干温度对结果的影响非常大。因此,在一般情况下,不能得到满意水质检测结果,该水质检测方法的结果不够精确。
㈣ 利用水生生物监测和评价水体污染的两种方法!!!急,在线等!
2.3 水污染生物监测的方法
2.3.1利用指示生物在水体中的出现或消失、数量的多少来监测水质
许木启 [3]利用白洋淀水体中浮游动物群落优势种的变化来判断水体的污染程度和自净程度。结果表明,府河—白洋淀水体从上游至下游,浮游动物耐污种类逐渐减少,广布型种类逐渐出现较多,在下游许多正常水体出现的种类均有分布;同时,原生动物由上游的鞭毛虫至中游出现纤毛虫,在下游则发现很多一般分布在清洁型水体的种类,表明府河—白洋淀水体从上游到下游水体的污染程度不断减轻,水体具有明显而稳定的自净功能。
2.3.2利用水生生物群落结构的变化来监测水质
蒋昭凤等 [4]用底栖动物的变化趋势评价湘江水质污染,结果发现湘江干流底栖大型无脊椎动物种类数和物种的多样性指数从上游到下游呈减少趋势,表明毒杀生物的有毒物质对湘江的污染较为明显,并且可根据湘江干流各断面种类数的减少程度判断出各断面的污染程度;同时也观察到,随着时间的推移,底栖大型无脊椎动物种类数和多样性指数也呈减少趋势,说明这种有毒污染仍在发展之中。
2.3.3水污染的生物测试
水污染的生物测试是利用水生生物受到污染物质的毒害所产生的生理机能的变化,测试水质污染状况。
Belding [5]根据鱼的呼吸变化指示有毒环境,在有污染物存在的情况下,鱼腮呼吸加快且无规律。德国[6]从1977年开始研究利用鱼的正趋流性开展生物监测,在下游设强光区或适度电击,控制健康鱼向下游的活动;或间歇性提高水流速度,迫使鱼反应。如果鱼不能维持在上游的位置,则表明污染产生了危害。
3 国内外水污染生物监测的研究进展
近几年来,应用生物监测环境技术的研究广泛开展,出现了一些新方法、新材料和新的监测物,提高了生物检测的灵敏性。
3.1 水污染生物监测及其检测的新方法
3.1.1 利用遗传毒理学监测水体污染
环境污染物质对人类及其它生物危害最为严重的问题是对细胞遗传物质造成的损害。因此,近20年来环境生物检测技术的研究和应用,尤其是细胞微核技术和四分体微核技术在动植物以及人类染色体受外界理化因子的损伤等方面的分析、诱变剂的测试筛选,以及应用于环境监测的研究得到了广泛的发展[7]。微核在生物细胞内的形成途径以及与染色体畸变的相关性早已被人们所认识,用微核测定法替代染色体畸变方法来监测环境污染物对生物遗传物质的损伤具有简便、快速、灵敏度高等优点。最常用的蚕豆根尖细胞微核试验技术是一种以染色体损伤及纺锤丝毒性等为测试终点的植物微核监测方法,该技术自1982年由Degrassi等建立以来,在环境诱变和致癌因子的检测研究中,特别是在水质污染和致突变剂检测研究中得到了广泛应用[8]。
吴甘霖 [9]在利用水花生根尖微核技术(MCN)对马鞍山市废水的监测研究中,发现利用水花生根尖微核可作为监测水体污染的新材料。其根尖细胞微核率 MCN(‰),不仅可用于监测不同废水的污染程度,而且由于该植物长期生活在污染水体中,还能反映不同废水的污染物富集程度及现状。当外界环境中存在一定浓度的致突变物时,可使细胞发生损伤,从而使微核细胞率上升。另外微核细胞率的上升,提示环境中存在有致突变物,即受试水样中含有能打断DNA分子的诱变剂或能打断纺锤丝的纺锤丝毒剂,从而表现出遗传毒性。
单细胞凝胶电泳(SCGE),即彗星试验也是一种通过检测DNA链损伤来判别遗传毒性的技术。它比微核试验更有益,因为环境中的遗传毒物浓度一般很低,而彗星试验检测低浓度遗传毒物具有高度灵敏性,所研究的细胞不需要处于有丝分裂期。同时,这种技术只需要少量细胞。目前它已经被用于检测哺乳动物、蚯蚓、一些高等植物、鱼类、两栖动物以及海洋无脊椎动物的细胞[11]。Mirjana Pavlica等 [10]用暴露在五氯苯酚(PCP)中的淡水蚌类(Dreissena polymorpha Pallas)血细胞进行彗星试验,观察血细胞中DNA损伤程度。在进行实验室实验和原位实验后,发现高浓度的PCP(80g/L)会引起血细胞中DNA断裂,表明用彗星试验检测DNA损伤能够监测水体中PCP污染。
SOS显色法[12]是国内在20世纪80年代发展起来的一种遗传毒性检测新方法,具有快速、准确、灵敏及假阳性率低的特点,被广泛用于遗传毒性的测定中。其原理是:在DNA分子受到外因引起的大范围损伤、其复制又受到抑制的情况下,会导致一种容易发生错误的修复。所有这些在遗传毒物处理后大肠杆菌中出现的一系列反应统称为SOS应答。SOS显色法有许多优于Ames的特点:(1)快速、简便,测定过程只需7h;(2)灵敏,被处理的细胞全产生或不产生SOS反应,用分光光度法测定β-ONPG(邻硝基苯β-D-半乳糖苷)分解产物非常灵敏;(3)准确,SOS显色法测定的是遗传毒物对细胞原发的直接反应,其阳性结果十分可信,而Ames试验的假阳性率较高。因此,SOS显色法已引起人们的密切关注,成为一种值得推广的水质监测评价方法。
3.1.2 微型生物监测(PFU法)
以前生物监测的研究重点多放在分类和结构方面。然而,生物系统的结构变化并非总与生物系统的其它变化相关联,仅以某个种类、某个种群构成的生物反应系统的变化来评价一个水生生态系统,其偏差较大。因此,为掌握水生生态系统对环境污染的完整反应,要求我们在生物系统(细胞、组织、个体、种群、群落、生态系统)中选择超出单一种类水平即群落或生态系统来作为生物监测的生物反应系统,并对该系统的结构和功能变化均进行研究。美国Cains创建了用聚氨酯泡沫塑料块(简写为PFU)测定微型生物群落的结构和功能参数,进而进行监测预报的新方法。中科院水生所沈韫芬研究员把PFU应用到生物监测中,并使PFU法成为我国生物监测的一种标准方法[13]。PFU法适用于原生动物、藻类对水质的检测。此方法可以鉴别水体是有机污染还是毒性污染。
尹福祥、杨立辉 [13]应用PFU法对某印染厂印染废水处理设施的净化效能进行了监测。结果表明,微型生物群落的结构参数和功能参数均较好地反映了印染废水的净化效果。与经典的生物监测方法相比,PFU法由单一监测结构(或功能 )参数转变为结构参数(种类组成、优势种)和功能参数(群集参数)同时监测,提高了生物监测的信息捕获能力,并使监测信息能更完整、准确、精密地评价环境状况。PFU法可快速、准确地监测水质的突变,通过1d的试验结果就能预测、预报受纳系统环境质量的状态及其变化过程。某样点的群集曲线突然大幅下降,说明该点的水质发生了突变,应调查有无事故性排放。
由于潮汐流和环流的影响,PFU法用于海水水质监测的有效性不如在淡水中监测。Kuidong Xu等 [14]用一种改良的PFU法—瓶装聚氨酯泡沫塑料块(BPFU)法进行海水的生物监测。BPFU法是将2块聚氨酯泡沫塑料块装入1个圆柱形塑料瓶中,塑料瓶有4道裂缝,用于保护聚氨酯泡沫塑料块不受粗糙条件的干扰,同时便于微生物群落进入聚氨酯泡沫塑料块,达到平衡。BPFU法比传统的PFU法在海水生物监测中的优越性体现在:⑴取样稳定;⑵海水生物评价结构和功能的精确性;⑶定量比较时可以保持水体积的稳定性。实验结果表明,用BPFU法进行海水生物监测比PFU法更加有效。通过BPFU法聚集的物种数量随污染物强度的增大而减少,减少程度大于PFU法。由BPFU法计算出的多样性指数同样也高于PFU法。
3.1.3 应用分子生态毒理学方法监测水体污染
随着社会的进步,生物技术也在不断地发展,在此基础上逐步形成了分子生态毒理学。分子生态毒理学采用现代分子生物学方法与技术,研究污染物及代谢产物与细胞内大分子,包括蛋白质、核酸、酶的相互作用,找出作用的靶位或靶分子,并揭示其作用机理,从而能对在个体、种群、群落或生态系统水平上的影响作出预报,具有很大的预测价值。目前最常用的是把腺三磷酶作为生物学标志,方法是测定体内三磷酸腺苷酶ATPase的活性,并以其活性强弱作为多种污染物胁迫的指标[15]。
Petrovi S等 [16]通过测定贻贝 (Mytilus galloprovincialis Lam.)消化腺上皮细胞中的溶酶体(Lysosome)膜的稳定性和金属硫蛋白(Metallothionein,MT)的含量来监测水体中有毒物质。贻贝消化腺上皮细胞中的溶酶体是有毒物质积累滞留的主要场所,同时它在排泄有毒污染物质的过程中起着关键作用。溶酶体中的有毒物质会削弱膜的稳定性,减少产生水解作用的溶酶体酶向细胞溶质中扩散。MT是动物对周围环境中过量金属的一种防御机制,能够阻止有毒物质及其代谢产物产生的细胞毒素对有机体产生影响。一般来说,监测MT的方法比监测组织中金属总量更可行,因为这种方法可以将胞内具有显着毒理效应的金属结合片段与不可利用的金属络合物区分出来[17]。因此贻贝消化腺上皮细胞中的溶酶体膜的稳定性和金属硫蛋白的含量的测定可以作为水体环境有毒物质变化的早期警报。
近年来,生物体内胆碱脂酶活性的测定已经成为海水和淡水水体污染的一种监测工具。由于环境中的有机磷农药和氨基甲酸盐杀虫剂与底物乙酰胆碱的分子形状类似,能与酶酯基的活性中心发生不可逆的键合从而抑制酶活性,因此它可以用来评价有机体在杀虫剂和毒害神经的污染物质(如重金属)中的暴露程度。Mohamed Dellali等 [18]用蛤和贻贝监测泻湖的水体污染,结果表明,蛤和贻贝体内乙酰胆碱脂酶的活性能很好地反映当地水体的污染状况。
3.1.4水生生物环境诊断技术
用常规的毒性测试可以检测污染严重水体的毒性,但对于低毒性水体,用常规的毒性试验难以检测到其毒性水平。为此,日本NUS株式会社开发出一种低毒性水体的新的生物测试方法——水生生物环境诊断技术(Aquatic Organisms Environment Diagnostics,简称AOD)[19]。该方法采用冷冻浓缩技术 ,将低毒性水体样品中的部分水分脱出,使水样中的毒理成分合理地浓缩,再进行生物毒性试验,进而判定水体的毒性水平。AOD技术所选用的测试鱼要求体积较小,同时要满足测试生物所必备的高敏感性、取材方便、便于饲养或繁殖、品系纯等条件。目前,AOD主要采用红鳍鱼(T.albnubes)和淡水虾(P.compressa)作测试生物。
3.1.5 幼虫变态实验
近年来,对于以海洋无脊椎动物的胚胎和幼虫期毒性实验研究较为广泛。然而研究表明[20],浮游幼虫变态比现有的生物个体水平的毒性实验指标更为敏感。海洋底栖无脊椎动物幼虫的变态期是其生活史的关键阶段,变态期的幼体对污染物的敏感性要高于其它阶段,胚胎发生和幼虫发育不受影响的污染物浓度会阻碍其变态。幼虫的变态过程易于观察(受到外来信息物质的调控),易受环境污染的干扰。与死亡率比较,能否在附着基表面顺利变态是监测污染物毒性的更敏感的指标。
3.1.6 四膜虫 (Tetrahymena pyriformis) 刺泡发射法
四膜虫是一种淡水单细胞生物,生长速度快、繁殖量大,实验室内易无菌培养和控制,适用于水质监测。以前应用四膜虫监测水质都是通过测试四膜虫的生长曲线和繁殖曲线等生物学特征来反映水质变化情况。然而四膜虫个体差异小、对化学毒物敏感,在诱变实验中无须添加活化酶、自发突变率低,也是一种理想的致突变试验材料。四膜虫的刺泡是附着在细胞质表面,由基粒分化而来,垂直胞质排列,当外界环境因子触发可诱导刺泡发射,形成显微镜下可见的分泌泡。吴伟等[21]用阳性致突变物诱发四膜虫刺泡发射,试验结果表明,四膜虫对致突变阳性物质相当敏感,且有剂量效应关系。因此利用四膜虫刺泡发射是评价水体中化学物质致突变的一种快速、简便、良好的方法。
3.2 水污染生物监测的新材料和新的监测物
近年来,水污染生物监测不仅出现了一些新的方法,同时也出现了一些新材料、新的监测物。席玉英、韩凤英等 [22]对长叶异痣蟌〔Ischnura elegans(VanderLinden)〕体内汞含量及与水体汞污染的关系进行了研究,结果发现,长叶异痣蟌对水体汞具有富集性,富集倍数高达5448~7600倍,可作为水体汞污染的监测生物。其中雌性长叶异痣蟌体内汞含量样体(同时、同地采集的)间存在很大差异,因此可作为水体汞污染的定性研究,不宜作为水体汞污染的定量监测。而雄性长叶异痣蟌体内汞含量样本间的差异则不显着,并且雄性长叶异痣蟌体内汞含量随水体汞含量的增加及时间的延长而增加,可作为水体汞污染的指示生物。
Flammarion P等 [23]通过测定白鲑(Leuciscus cephalus)体内胆碱脂酶的活性来监测水体污染,发现白鲑可以成为很好的水体污染监测工具。而Khan R A等 [24]用比目鱼(Pleuronectes americanus)体内乙氧基-异吩恶唑酮-脱乙基酶(EthoxyresorufinO-Deethylase,EROD)活性的强弱来判断纽芬兰岛水体的污染状况,发现它也有很好的监测效果。
Kahle J等[25]测定一种桡脚类动物Metridia gerlachei对威德尔海中痕量金属的生物累积率,发现Metridia gerlachei对Co、Cu、Ni、 Pb 、 Zn等金属元素的敏感度较高,可以作为海水中金属元素的监测物。而Rainbow P S 等[26]利用藤壶监测香港海域中痕量金属,同样也得到很好的效果。
刘绮 [27]进行了一种新的生物监测方法研究。他以孵化好的Ⅱ~Ⅲ期卤虫为受试生物,实验研究了K2Cr2O7、HgCl2、As2O3、KCN、六六六、苯酚、苯7种物质对卤虫的中毒阈值和 LC50 -24h(Leathal Concentration 50-24h, 24 h半致死浓度)的测定,阐明了该方法具有操作简便、快速、覆盖面宽、技术易掌握、所需设备不复杂等特点。此生物监测方法在环境科学与工程中的研究和应用可进一步扩展到对入江、河、海的工业排放物的检毒、农药残留量分析、真菌毒素分析等广泛领域。