导航:首页 > 研究方法 > 线性回归分析方法

线性回归分析方法

发布时间:2022-01-30 16:13:49

⑴ 回归分析法的分类

回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。回归分析法预测是利用回归分析方法,根据一个或一组自变量的变动情况预测与其有相关关系的某随机变量的未来值。进行回归分析需要建立描述变量间相关关系的回归方程。根据自变量的个数,可以是一元回归,也可以是多元回归。根据所研究问题的性质,可以是线性回归,也可以是非线性回归。非线性回归方程一般可以通过数学方法为线性回归方程进行处理。

什么是回归分析主要内容是什么

在统计学中,回归分析(regression analysis)指的是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
拓展资料
在大数据分析中,回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。例如,司机的鲁莽驾驶与道路交通事故数量之间的关系,最好的研究方法就是回归。
方法
有各种各样的回归技术用于预测。这些技术主要有三个度量(自变量的个数,因变量的类型以及回归线的形状)。
1. Linear Regression线性回归
它是最为人熟知的建模技术之一。线性回归通常是人们在学习预测模型时首选的技术之一。在这种技术中,因变量是连续的,自变量可以是连续的也可以是离散的,回归线的性质是线性的。
线性回归使用最佳的拟合直线(也就是回归线)在因变量(Y)和一个或多个自变量(X)之间建立一种关系。
多元线性回归可表示为Y=a+b1*X +b2*X2+ e,其中a表示截距,b表示直线的斜率,e是误差项。多元线性回归可以根据给定的预测变量(s)来预测目标变量的值。
2.Logistic Regression逻辑回归
逻辑回归是用来计算“事件=Success”和“事件=Failure”的概率。当因变量的类型属于二元(1 / 0,真/假,是/否)变量时,应该使用逻辑回归。这里,Y的值为0或1,它可以用下方程表示。
odds= p/ (1-p) = probability of event occurrence / probability of not event occurrence
ln(odds) = ln(p/(1-p))
logit(p) = ln(p/(1-p)) =b0+b1X1+b2X2+b3X3....+bkXk
上述式子中,p表述具有某个特征的概率。你应该会问这样一个问题:“为什么要在公式中使用对数log呢?”。
因为在这里使用的是的二项分布(因变量),需要选择一个对于这个分布最佳的连结函数。它就是Logit函数。在上述方程中,通过观测样本的极大似然估计值来选择参数,而不是最小化平方和误差(如在普通回归使用的)。
3. Polynomial Regression多项式回归
对于一个回归方程,如果自变量的指数大于1,那么它就是多项式回归方程。如下方程所示:
y=a+b*x^2
在这种回归技术中,最佳拟合线不是直线。而是一个用于拟合数据点的曲线。
4. Stepwise Regression逐步回归
在处理多个自变量时,可以使用这种形式的回归。在这种技术中,自变量的选择是在一个自动的过程中完成的,其中包括非人为操作。

⑶ 什么是线性回归模型

1、有的假定不直接涉及总体分布形式,如在回归分析中常假定分析对象可表示为一些影响因素的线性函数称为线性回归模型
文献来源

2、有的假定不直接涉及总体分布形式如在回归分析中常假定分析对象可表示为一些影响因素的线性函数称为线性回归模型
文献来源

3、+βpxp+e(1.2)称为线性回归模型.假设我们对模型(1.2)中的变量y,x1,x2,.,xp进行了n次观测,得到n组观测值yi,xi1,xi2,
文献来源

一元线性回归模型是用于分析一个自变量(X)与一个因变量(Y)之间线性关系的数学方程。一般形式为:
(5.5)
式中: 是因变量Y的估计值,也称理论值。X是自变量, 为未知参数。 是直线方程的截距,即 时的 值; 是回归直线的斜率,也称回归系数,表示自变量每变化一个单位时 的增量( )它的符号与相关系数 是一致的,当 >0时,表示X与 同方向变化;当 <0时,表示X与 反方向变化;当 =0时,表示自变量X与因变量 之间不存在线性关系,无论X取何值, 为一常数。

⑷ 一线性回归分析法

一元线性回归分析预测法,是根据自变量x和因变量Y的相关关系,建立x与Y的线性回归方程进行预测的方法。由于市场现象一般是受多种因素的影响,而并不是仅仅受一个因素的影响。所以应用一元线性回归分析预测法,必须对影响市场现象的多种因素做全面分析。只有当诸多的影响因素中,确实存在一个对因变量影响作用明显高于其他因素的变量,才能将它作为自变量,应用一元相关回归分析市场预测法进行预测。

一元线性回归分析法的预测模型为:

(1)

式中,xt代表t期自变量的值;

代表t期因变量的值;

a、b代表一元线性回归方程的参数。

a、b参数由下列公式求得(用代表):为简便计算,我们作以下定义:

(2)

式中:

这样定义a、b后,参数由下列公式求得:

(3)

将a、b代入一元线性回归方程Yt = a + bxt,就可以建立预测模型,那么,只要给定xt值,即可求出预测值。

在回归分析预测法中,需要对X、Y之间相关程度作出判断,这就要计算相关系数Y,其公式如下:相关系数r的特征有:

①相关系数取值范围为:-1≤r≤1 。

②r与b符合相同。当r>0,称正线性相关,Xi上升,Yi呈线性增加。当r<0,称负线性相关,Xi上升,Yi呈线性减少。

③|r|=0,X与Y无线性相关关系;|r|=1,完全确定的线性相关关系;0<|r|<1,X与Y存在一定的线性相关关系;|r|>0.7,为高度线性相关;0.3<|r|≤0.7,为中度线性相关;|r|≤0.3,为低度线性相关。

⑸ 什么软件可以做线性回归分析

wps可以实现,具体如下:

1、第一步,输入数据,使用前一列的X轴和Y轴在下一列输入数据,见下图,转到下面的步骤。

⑹ 回归分析方法

§3.2 回归分析方法
回归分析方法,是研究要素之间具体的数量关系的一种强有力的工具,能够建立反映地理要素之间具体的数量关系的数学模型,即回归模型。
1. 一元线性回归模型
1) 一元线性回归模型的基本结构形式
假设有两个地理要素(变量)x和y,x为自变量,y为因变量。则一元线性回归模型的基本结构形式:

a和b为待定参数;α=1,2,…,n为各组观测数据的下标; εa为随机变量。如果记a^和b^ 分别为参数a与b的拟合值,则得到一元线性回归模型

ÿ 是y 的估计值,亦称回归值。回归直线——代表x与y之间相关关系的拟合直线

2) 参数a、b的最小二ÿ乘估计
参数a与b的拟合值:

,

建立一元线性回归模型的过程,就是用变量 和 的实际观测数据确定参数a和b的最小二乘估计值α^和β^ 的过程。
3) 一元线性回归模型的显着性检验
线性回归方程的显着性检验是借助于F检验来完成的。
检验统计量F:

误差平方和:

回归平方和:

F≈F(1,n-2)。在显着水平a下,若 ,则认为回归方程效果在此水平下显着;当 时,则认为方程效果不明显。

[举例说明]
例1:在表3.1.1中,将国内生产总值(x1)看作因变量y,将农业总产值(x2)看作自变量x,试建立它们之间的一元线性回归模型并对其进行显着性检验。
解:
(1) 回归模型
将y和x的样本数据代入参数a与b的拟合公式,计算得:

故,国内生产总值与农业总产值之间的回归方程为

(2) 显着性检验

在置信水平α=0.01下查F分布表得:F0.01(1,46)=7.22。由于F=4951.098 >> F0.01(1,46)=7.22,所以回归方程(3.2.7)式在置信水平a=0.01下是显着的。

2. 多元线性回归模型
在多要素的地理系统中,多个(多于两个)要素之间也存在着相关影响、相互关联的情况。因此,多元地理回归模型更带有普遍性的意义。
1) 多元线性回归模型的建立
(1) 多元线性回归模型的结构形式
假设某一因变量y受k 个自变量 的影响,其n组观测值为 。则多元线性回归模型的结构形式:

为待定参数, 为随机变量。如果 分别为 的拟合值,则回归方程为

b0为常数, 称为偏回归系数。
偏回归系数 ——当其它自变量都固定时,自变量 每变化一个单位而使因变量xi平均改变的数值。

(2) 求解偏回归系数

,

2) 多元线性回归模型的显着性检验
用F检验法。
F统计量:

当统计量F计算出来之后,就可以查F分布表对模型进行显着性检验。
[举例说明]
例2:某地区各城市的公共交通营运总额(y)与城市人口总数(x1 )以及工农业总产值(x2)的年平均统计数据如表3.2.1(点击展开显示该表)所示。试建立y与x1及x2之间的线性回归模型并对其进行显着性检验。

表3.2.1 某地区城市公共交通营运额、人口数及工农业总产值的年平均数据

城市序号

公共交通营运额y/103人公里 人口数x1/103人 工农业总产值x2
/107元
1 6825.99 1298.00 437.26
2 512.00 119.80 1286.48
... ... ... ...
14 192.00 12.47 1072.27
注:本表数据详见书本P54。
解:
(1) 计算线性回归模型
由表3.2.1中的数据,有

计算可得:

故y与x1 及y2之间的线性回归方程

(2) 显着性检验

故:

在置信水平a=0.01下查F分布表知:F0.01(2,11)=7.21。由于F=38.722> F0.01(2,11)=7.21,所以在置信水平a=0.01下,回归方程式是显着的。

3. 非线性回归模型的建立方法
1) 非线性关系的线性化
(1) 非线性关系模型的线性化
对于要素之间的非线性关系通过变量替换就可以将原来的非线性关系转化为新变量下的线性关系。
[几种非线性关系模型的线性化]

① 于指数曲线 ,令 , ,将其转化为直线形式:
,其中, ;
② 对于对数曲线 ,令 , ,将其转化为直线形式:

③ 对于幂函数曲线 ,令 , ,将其转化为直线形式:
,其中,
④ 对于双曲线 ,令 ,将其转化为直线形式:

⑤ 对于S型曲线 ,将其转化为直线形式:


⑥ 对于幂函数乘积:

令 将其转化为直线形式:

其中, ;
⑦ 对于对数函数和:

令 ,将其化为线性形式:

(2) 建立非线性回归模型的一般方法
① 通过适当的变量替换将非线性关系线性化;
② 用线性回归分析方法建立新变量下的线性回归模型:
③ 通过新变量之间的线性相关关系反映原来变量之间的非线性相关关系。
3) 非线性回归模型建立的实例

非线性回归模型建立的实例

景观是地理学的重要研究内容之一。有关研究表明(Li,2000;徐建华等,2001),任何一种景观类型的斑块,其面积(Area)与周长(Perimeter)之间的数量关系可以用双对数曲线来描述,即

例3:表3.2.2给出了某地区林地景观斑块面积(Area)与周长(Perimeter)的数据。试建立林地景观斑块面积A与周长P之间的双对数相关关系模型。

表3.2.2某地区各个林地景观斑块面积(m2)与周长(m)

序号 面积A 周长P 序号 面积A 周长P
1 10447.370 625.392 42 232844.300 4282.043
2 15974.730 612.286 43 4054.660 289.307
... ... ... ... ... ...
41 1608.625 225.842 82 564370.800 12212.410

注:本表数据详见书本57和58页。

解:因为林地景观斑块面积(A)与周长(P)之间的数量关系是双对数曲线形式,即

所以对表3.2.2中的原始数据进行对数变换,变换后得到的各新变量对应的观测数据如表3.2.3所示。

⑺ 请问SPSS怎么做线性回归分析

回归分析用于研究影响关系情况,实质上就是研究自变量X对因变量Y的影响关系情况。

具体可以使用在线spss平台SPSSAU进行分析,分析步骤如下:

1、上传数据,选择线性回归

配合输出智能文字分析,可以结合数据进行解读。

⑻ 线性回归法

在统计学中,线性回归(Linear Regression)是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。这种函数是一个或多个称为回归系数的模型参数的线性组合。只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归。(这反过来又应当由多个相关的因变量预测的多元线性回归区别,而不是一个单一的标量变量。)
回归分析中有多个自变量:这里有一个原则问题,这些自变量的重要性,究竟谁是最重要,谁是比较重要,谁是不重要。所以,spss线性回归有一个和逐步判别分析的等价的设置。
原理:是F检验。spss中的操作是“分析”~“回归”~“线性”主对话框方法框中需先选定“逐步”方法~“选项”子对话框
如果是选择“用F检验的概率值”,越小代表这个变量越容易进入方程。原因是这个变量的F检验的概率小,说明它显着,也就是这个变量对回归方程的贡献越大,进一步说就是该变量被引入回归方程的资格越大。究其根本,就是零假设分水岭,例如要是把进入设为0.05,大于它说明接受零假设,这个变量对回归方程没有什么重要性,但是一旦小于0.05,说明,这个变量很重要应该引起注意。这个0.05就是进入回归方程的通行证。
下一步:“移除”选项:如果一个自变量F检验的P值也就是概率值大于移除中所设置的值,这个变量就要被移除回归方程。spss回归分析也就是把自变量作为一组待选的商品,高于这个价就不要,低于一个比这个价小一些的就买来。所以“移除”中的值要大于“进入”中的值,默认“进入”值为0.05,“移除”值为0.10
如果,使用“采用F值”作为判据,整个情况就颠倒了,“进入”值大于“移除”值,并且是自变量的进入值需要大于设定值才能进入回归方程。这里的原因就是F检验原理的计算公式。所以才有这样的差别。
结果:如同判别分析的逐步方法,表格中给出所有自变量进入回归方程情况。这个表格的标志是,第一列写着拟合步骤编号,第二列写着每步进入回归方程的编号,第三列写着从回归方程中剔除的自变量。第四列写着自变量引入或者剔除的判据,下面跟着一堆文字。

⑼ 计量经济学多元线性回归模型属于什么研究方法

模拟法(模型方法)
模拟法是先依照原型的主要特征,创设一个相似的模型,然后通过模型来间接研究原型的一种形容方法。根据模型和原型之间的相似关系,模拟法可分为物理模拟和数学模拟两种。

⑽ 线性回归分析法/是什么意思

找出变量间的依存(数量)关系,

函数关系
式表达出来一般分一次
线性回归
,二次线性回归,多次线性回归

阅读全文

与线性回归分析方法相关的资料

热点内容
索赔的利率计算方法 浏览:727
房间砌体方正度测量方法 浏览:645
弹簧鱼钩的使用方法 浏览:446
pc肌的锻炼方法女 浏览:279
约克夏犬训练方法 浏览:191
玛卡能泡酒的功效与食用方法 浏览:705
苹果电脑设置一键还原方法 浏览:289
天正钢筋安装方法 浏览:227
101乘87简便运算方法 浏览:335
小米搜狗输入法快捷键设置在哪里设置方法 浏览:965
锅底清洗有哪些方法 浏览:848
柠檬水怎么制作方法 浏览:468
peikko螺栓连接方法 浏览:752
真空压力表使用方法 浏览:616
插花中可以采用哪些颜色搭配方法 浏览:742
双控开关灯管连接方法 浏览:485
致病菌分析方法 浏览:525
点赞操作方法视频 浏览:559
缺牙如何处理方法 浏览:103
水果盒的简单制作方法 浏览:858