导航:首页 > 研究方法 > 数据分析中缺失值的方法

数据分析中缺失值的方法

发布时间:2023-07-02 18:28:08

㈠ spss分析方法-缺失值分析

 

spss 分析方法 - 缺失值分析

缺失值可能会导致严重的问题。如果带有缺失值的个案与不带缺失值的个案有着根本的不同,则结果将被误导。此外,缺失的数据还可能降低所计算的统计量的精度,因为计算时的信息比原计划的信息要少。

另一个问题是, 很多统计过程背后的假设都基于完整的个案,而缺失值可能使所需的理论复杂化。

下面我们主要从下面四个方面来解说:

[if !supportLineBreakNewLine]

[endif]

实际应用

理论思想

建立模型

[if !supportLineBreakNewLine]

[endif]

分析结果

[if !supportLineBreakNewLine]

[endif]

一、实际应用

[if !supportLineBreakNewLine]

[endif]

众所周知,在诸如收入、交通事故等问题的研究中,因为被调查者拒绝回答或者由于调查研究中的损耗,会存在一些未回答的问题。

例如在一次人口调查中,15%的人没有回答收入情况,高收入者的回答率比中等收入者要低,或者在严重交通事故报告中,诸如是否使用安全带和酒精浓度等关键问题在很多个案中都没有记录,这些缺失的个案值便是缺失值。缺失值主要表现为以下3种: (1)完全随机缺失(Missing Completely At Random,MCAR),表示缺失和变量的取值无关。 例如,假设在研究年龄和收入的关系,如果缺失的数据和年龄或收入数值无关,则缺失值方式为MCAR。要评估MCAR是否为站得住脚的假设,可以通过比较回答者和未回答者的分布来评估观察数据。也可以使用单变量t-检验或Little's MCAR多变量检验来进行更正规的评估。如果MCAR假设为真,可以使用列表删除(listwise deletion)(完整个案分析),无须担心估计偏差,尽管可能会丧失一些有效性。如果MCAR不成立,列表删除、均值置换等逼近方法就可能不是好的选择。 (2)随机缺失(Missing At Random,MAR) , 缺失分布中调查变量只依赖于数据组中有记录的变量。 继续上面的例子,考虑年龄全部被观察,而收入有时有缺失,如果收入缺失值仅依赖于年龄,缺失值就为MAR。 (3)非随机缺失。 这是研究者最不愿意看到的情形,数据的缺失不仅和其他变量的取值有关,也和自身有关。如果收入缺失值依赖于收入值,则既不是MCAR,也不是MAR。

[if !supportLineBreakNewLine]

[endif]

二、理论思想

SPSS主要对MCAR和MAR两种缺失值情况进行分析。

区别MCAR和MAR的含义在于:由于MCAR实际上很难遇到,应该在进行调查之前就考虑哪些重要变量可能会有非无效的未回答,还要尽量在调查中包括共变量,以便用这些变量来估算缺失值。

[if !supportLineBreakNewLine]

[endif]

针对不同情况的缺失值,SPSS操作给出了以下3种处理方法:

( 1 )删除缺失值, 这种方法适用于缺失值非常少的时候,它不需要专门的步骤,通常在相应的分析对话框的“选项”子对话框中进行设置。

( 2 )替换缺失值 ,利用“转换”菜单中的“替换缺失值”命令将所有的记录看成一个序列,然后采用某种指标对缺失值进行填充。

( 3 )缺失值分析过程 ,缺失值分析过程是SPSS专门针对缺失值分析而提供的模块。

缺失值分析过程有以下3个主要功能: ( 1 )描述缺失值的模式。 通过缺失值分析的诊断报告,用户可以明确地知道缺失值所在位置及其出现的比例是多少,还可以推断缺失值是否为随机缺失等。 ( 2 )利用列表法、成对法、回归法或 EM (期望最大化)法等为含缺失值的数据估算平均值、标准误差、协方差和相关性,成对法还可显示成对完整个案的计数。( 3 )使用回归法或 EM 法用估算值填充(插补)缺失值,以此提高统计结果的可信度。 缺失数据可以是分类数据或定量数据(刻度或连续),尽管如此,SPSS只能为定量变量估计统计数据并插补缺失数据。对于每个变量,必须将未编码为系统缺失值的缺失值定义为用户缺失值。舍尔判别法利用投影的方法使多维问题简化为一维问题来处理。其通过建立线性判别函数计算出各个观测量在各典型变量维度上的坐标并得出样本距离各个类中心的距离,以此作为分类依据。

[if !supportLineBreakNewLine]

[endif]

[if !supportLineBreakNewLine]

[endif]

三、建立模型

缺失值分析案例:

[if !supportLineBreakNewLine]

[endif]

题目:下表的某些人口统计数据值已被缺失值替换。该假设数据文件涉及某电信公司在减少客户群中的客户流失方面的举措,每个个案对应一个单独的客户,并记录各类人口统计和服务用途信息。下面将结合本数据文件详细说明如何得到数据文件的缺失值,从而认识SPSS的缺失值分析过程。

一、数据输入

二、操作步骤 1、进入SPSS,打开相关数据文件,“分析”|“缺失值分析”命令2、选择“婚姻状况[marital]”“受教育水平[ed]”“退休[retire]”及“性别[gender]”4个变量进入“分类变量”列表框;选择“服务月数[tenure]”“年龄[age]”“在现住址居住年数[address]”“家庭收入(千)[income]”“现职位工作年数[employ]”及“家庭人数[reside]”6个变量进入“定量变量”列表框。

3、在“缺失值分析”对话框中单击“模式”按钮,弹出“缺失值分析:模式”对话框,选中“显示”选项组中的“个案表(按缺失值模式分组)”复选框,从“以下对象的缺失模式”列表框中选中income、ed、retire和gender 4个变量进入“以下对象的附加信息”列表框中。

其他采用默认设置。设置完毕后,单击“继续”按钮,回到“缺失值分析”对话框。

4、单击“描述”按钮,弹出“缺失值分析:描述”对话框。选中“单变量统计”复选框及“指示符变量统计”选项组中的“使用由指示符变量构成的组执行t检验”和“生成分类变量和指示符变量的交叉表”复选框,其他采用默认设置。

5、勾选EM,其余设置采用系统默认值即可。单击“确定”按钮,等待输出结果。

[if !supportLineBreakNewLine]

[endif]

四、结果分析

1、单变量统计表下表给出了所有分析变量未缺失数据的频数、平均值和标准差,同时给出了缺失值的个数和百分比以及极值的统计信息。通过这些信息,我们可以初步了解数据的概貌特征,以employ一栏为例,employ变量的有效数据有904个,它们的平均值为11,标准差为10.113,缺失数据有96个,占数据总数的比例为9.6%,有15个极大值。

2、估算表下两个表使用EM法进行缺失值的估算后,总体数据的均值和标准差的变化情况,其中“所有值”为原始数据的统计特征,EM为使用EM法后总体数据的统计特征。

3

、独立方差t检验表独立方差t测试结果,用户可以从中找出影响其他定量变量的变量的缺失值模式, 即通过单个方差 t 统计量结果,检验缺失值是否为完全随机缺失。 可以看出,年龄大的人倾向于不报告收入水平,当收入值缺失时,age的均值是49.73,当收入值完整时,age的均值为40.01。通过income一栏的t统计量可以看出,income的缺失将明显影响其他定量变量,这就说明income的缺失不是完全随机缺失。

4、分类变量和定量变量交叉表以marital为例给出了分类变量与其他定量变量间的交叉表。该表给出了在不同婚姻情况下,各分类变量非缺失的个数和百分比,以及各种缺失值的个数和百分比,图中标识了系统缺失值的取值,以及各变量在不同婚姻情况中的分布情况。

5、表格模式输出结果下表给出了表格模式输出结果(缺失值样式表),它给出了缺失值分布的详细信息,X为使用该模式下缺失的变量。由图可以看出,所有显示的950个个案中,9个变量值都完整的个案数有475个,缺失income值的个案有109个,同时缺失address和income值的个案有16个,其他数据的解释类似。

6、EM估算统计表下面三个表给出了EM算法的相关统计量,包括EM平均值、协方差和相关性。从EM平均值输出结果中可知,age变量的平均值为41.91,从EM协方差输出结果中可知,age和tenture间的协方差值为135.326,从EM相关性输出结果中可知,age与tenture的相关系数为0.496。另外,从三个表格下方的 利特尔的MCAR检验可知,卡方检验的显着性值明显小于0.05,因此,我们拒绝了缺失值为完全随机缺失(MCAR)的假设 ,这也验证了3、独立方差t检验表所得到的结论。

[if !supportLineBreakNewLine]

[endif]

参考案例数据:

[if !supportLineBreakNewLine]

[endif]

[if !supportLists]【1】    [endif]spss统计分析从入门到精通 (第四版)  杨维忠,陈胜可,刘荣  清华大学出版社

(获取更多知识,前往gz号程式解说)

原文来自https://mp.weixin.qq.com/s/CsMIoA_vu8HJoPvW16oNFg

㈡ 缺失值在回归前一般是要处理的,有多种处理方式.1均值替代;2多重补漏分析

(一)个案剔除法(Listwise Deletion)
最常见、最简单的处理缺失数据的方法是用个案剔除法(listwise
deletion),也是很多统计(如SPSS和SAS)默认的缺失值处理方法。在这种方法中如果任何一个变量含有缺失数据的话,就把相对应的个案从分析中剔除。如果缺失值所占比例比较小的话,这一方法十分有效。至于具体多大的缺失比例算是“小”比例,专家们意见也存在较大的差距。有学者认为应在5%以下,也有学者认为20%以下即可。然而,这种方法却有很大的局限性。它是以减少样本量来换取信息的完备,会造成资源的大量浪费,丢弃了大量隐藏在这些对象中的信息。在样本量较小的情况下,删除少量对象就足以严重影响到数据的客观性和结果的正确性。因此,当缺失数据所占比例较大,特别是当缺数据非随机分布时,这种方法可能导致数据发生偏离,从而得出错误的结论。
(二)均值替换法(Mean Imputation)
在变量十分重要而所缺失的数据量又较为庞大的时候,个案剔除法就遇到了困难,因为许多有用的数据也同时被剔除。围绕着这一问题,研究者尝试了各种各样的办法。其中的一个方法是均值替换法(mean
imputation)。我们将变量的属性分为数值型和非数值型来分别进行处理。如果缺失值是数值型的,就根据该变量在其他所有对象的取值的平均值来填充该缺失的变量值;如果缺失值是非数值型的,就根据统计学中的众数原理,用该变量在其他所有对象的取值次数最多的值来补齐该缺失的变量值。但这种方法会产生有偏估计,所以并不被推崇。均值替换法也是一种简便、快速的缺失数据处理方法。使用均值替换法插补缺失数据,对该变量的均值估计不会产生影响。但这种方法是建立在完全随机缺失(MCAR)的假设之上的,而且会造成变量的方差和标准差变小。
(三)热卡填充法(Hotdecking)
对于一个包含缺失值的变量,热卡填充法在数据库中找到一个与它最相似的对象,然后用这个相似对象的值来进行填充。不同的问题可能会选用不同的标准来对相似进行判定。最常见的是使用相关系数矩阵来确定哪个变量(如变量Y)与缺失值所在变量(如变量X)最相关。然后把所有个案按Y的取值大小进行排序。那么变量X的缺失值就可以用排在缺失值前的那个个案的数据来代替了。与均值替换法相比,利用热卡填充法插补数据后,其变量的标准差与插补前比较接近。但在回归方程中,使用热卡填充法容易使得回归方程的误差增大,参数估计变得不稳定,而且这种方法使用不便,比较耗时。
(四)回归替换法(Regression Imputation)
回归替换法首先需要选择若干个预测缺失值的自变量,然后建立回归方程估计缺失值,即用缺失数据的条件期望值对缺失值进行替换。与前述几种插补方法比较,该方法利用了数据库中尽量多的信息,而且一些统计(如Stata)也已经能够直接执行该功能。但该方法也有诸多弊端,第一,这虽然是一个无偏估计,但是却容易忽视随机误差,低估标准差和其他未知性质的测量值,而且这一问题会随着缺失信息的增多而变得更加严重。第二,研究者必须假设存在缺失值所在的变量与其他变量存在线性关系,很多时候这种关系是不存在的。
(五)多重替代法(Multiple Imputation)
多重估算是由Rubin等人于1987年建立起来的一种数据扩充和统计分析方法,作为简单估算的改进产物。首先,多重估算技术用一系列可能的值来替换每一个缺失值,以反映被替换的缺失数据的不确定性。然后,用标准的统计分析过程对多次替换后产生的若干个数据集进行分析。最后,把来自于各个数据集的统计结果进行综合,得到总体参数的估计值。由于多重估算技术并不是用单一的值来替换缺失值,而是试图产生缺失值的一个随机样本,这种方法反映出了由于数据缺失而导致的不确定性,能够产生更加有效的统计推断。结合这种方法,研究者可以比较容易地,在不舍弃任何数据的情况下对缺失数据的未知性质进行推断。NORM统计可以较为简便地操作该方法

㈢ 数据清理中,处理缺失值的方法有哪些

1.
删除含有缺失值的个案
2.
可能值插补缺失值
(1)均值插补
(2)利用同类均值插补。
(3)极大似然估计(Max
Likelihood
,ML)
(4)多重插补(Multiple
Imputation,MI)

㈣ 数据分析中缺失值的处理

数据缺失在许多研究领域都是一个复杂的问题,对数据挖掘来说,缺失值的存在,造成了以下影响:
1.系统丢失了大量的有用信息
2.系统中所表现出的不确定性更加显着,系统中蕴涵的确定性成分更难把握
3.包含空值的数据会使挖掘过程陷入混乱,导致不可靠的输出

数据挖掘算法本身更致力于避免数据过分拟合所建的模型,这一特性使得它难以通过自身的算法去很好地处理不完整数据。因此,缺失值需要通过专门的方法进行推导、填充等,以减少数据挖掘算法与实际应用之间的差距。

1.列表显示缺失值 mice包 md.pattern( )

2.图形探究缺失值 VIM包

3.用相关性探索缺失值

1.人工填写
由于最了解数据的还是用户自己,因此这个方法产生数据偏离最小,可能是填充效果最好的一种。然而一般来说,该方法很费时,当数据规模很大、空值很多的时候,该方法是不可行的。

2.特殊值填充
将空值作为一种特殊的属性值来处理,它不同于其他的任何属性值。如所有的空值都用“unknown”填充。这样将形成另一个有趣的概念,可能导致严重的数据偏离,一般不推荐使用。

3.平均值填充
将信息表中的属性分为数值属性和非数值属性来分别进行处理。如果空值是数值型的,就根据该属性在其他所有对象的取值的平均值来填充该缺失的属性值;如果空值是非数值型的,就根据统计学中的众数原理,用该属性在其他所有对象的取值次数最多的值(即出现频率最高的值)来补齐该缺失的属性值。另外有一种与其相似的方法叫条件平均值填充法(Conditional Mean Completer)。在该方法中,缺失属性值的补齐同样是靠该属性在其他对象中的取值求平均得到,但不同的是用于求平均的值并不是从信息表所有对象中取,而是从与该对象具有相同决策属性值的对象中取得。这两种数据的补齐方法,其基本的出发点都是一样的,以最大概率可能的取值来补充缺失的属性值,只是在具体方法上有一点不同。与其他方法相比,它是用现存数据的多数信息来推测缺失值。

4.热卡填充
对于一个包含空值的对象,热卡填充法在完整数据中找到一个与它最相似的对象,然后用这个相似对象的值来进行填充。不同的问题可能会选用不同的标准来对相似进行判定。该方法概念上很简单,且利用了数据间的关系来进行空值估计。这个方法的缺点在于难以定义相似标准,主观因素较多。

5.K最近距离邻法
先根据欧式距离或相关分析来确定距离具有缺失数据样本最近的K个样本,将这K个值加权平均来估计该样本的缺失数据。
同均值插补的方法都属于单值插补,不同的是,它用层次聚类模型预测缺失变量的类型,再以该类型的均值插补。假设X=(X1,X2…Xp)为信息完全的变量,Y为存在缺失值的变量,那么首先对X或其子集行聚类,然后按缺失个案所属类来插补不同类的均值。如果在以后统计分析中还需以引入的解释变量和Y做分析,那么这种插补方法将在模型中引入自相关,给分析造成障碍。

6.使用所有可能的值填充
用空缺属性值的所有可能的属性取值来填充,能够得到较好的补齐效果。但是,当数据量很大或者遗漏的属性值较多时,其计算的代价很大,可能的测试方案很多。

7.组合完整化方法
用空缺属性值的所有可能的属性取值来试,并从最终属性的约简结果中选择最好的一个作为填补的属性值。这是以约简为目的的数据补齐方法,能够得到好的约简结果;但是,当数据量很大或者遗漏的属性值较多时,其计算的代价很大。

8.回归
基于完整的数据集,建立回归方程(模型)。对于包含空值的对象,将已知属性值代入方程来估计未知属性值,以此估计值来进行填充,当变量不是线性相关或预测变量高度相关时会导致有偏差的估计(SPSS菜单里有这种方法)

9.期望值最大化方法
EM算法是一种在不完全数据情况下计算极大似然估计或者后验分布的迭代算法。在每一迭代循环过程中交替执行两个步骤:E步(Excepctaion step,期望步),在给定完全数据和前一次迭代所得到的参数估计的情况下计算完全数据对应的对数似然函数的条件期望;M步(Maximzation step,极大化步),用极大化对数似然函数以确定参数的值,并用于下步的迭代。算法在E步和M步之间不断迭代直至收敛,即两次迭代之间的参数变化小于一个预先给定的阈值时结束。该方法可能会陷入局部极值,收敛速度也不是很快,并且计算很复杂。(SPSS菜单里有这种方法)

10.1多重插补原理
多值插补的思想来源于贝叶斯估计,认为待插补的值是随机的,它的值来自于已观测到的值。具体实践上通常是估计出待插补的值,然后再加上不同的噪声,形成多组可选插补值。根据某种选择依据,选取最合适的插补值。

10.2多重填补在SPSS中的实现
10.2.1缺失模式分析
分析>多重归因>分析模式

10.2.2缺失值的多重填充
分析>多重归因>归因缺失数据值

10.2.3采用填充后的数据建模

10.3多重填补在R中的实现(基于mice包)

实例:

11.C4.5方法
通过寻找属性间的关系来对遗失值填充。它寻找之间具有最大相关性的两个属性,其中没有遗失值的一个称为代理属性,另一个称为原始属性,用代理属性决定原始属性中的遗失值。这种基于规则归纳的方法只能处理基数较小的名词型属性。

就几种基于统计的方法而言,删除元组法和平均值填充法差于热卡填充法、期望值最大化方法和多重填充法;回归是比较好的一种方法,但仍比不上热卡填充和期望值最大化方法;期望值最大化方法缺少多重填补包含的不确定成分。值得注意的是,这些方法直接处理的是模型参数的估计而不是空缺值预测本身。它们合适于处理无监督学习的问题,而对有监督学习来说,情况就不尽相同了。譬如,你可以删除包含空值的对象用完整的数据集来进行训练,但预测时你却不能忽略包含空值的对象。另外,C4.5和使用所有可能的值填充方法也有较好的补齐效果,人工填写和特殊值填充则是一般不推荐使用的。

补齐处理只是将未知值补以我们的主观估计值,不一定完全符合客观事实,在对不完备信息进行补齐处理的同时,我们或多或少地改变了原始的信息系统。而且,对空值不正确的填充往往将新的噪声引入数据中,使挖掘任务产生错误的结果。因此,在许多情况下,我们还是希望在保持原始信息不发生变化的前提下对信息系统进行处理。
直接在包含空值的数据上进行数据挖掘,这类方法包括贝叶斯网络和人工神经网络等。

贝叶斯网络是用来表示变量间连接概率的图形模式,它提供了一种自然的表示因果信息的方法,用来发现数据间的潜在关系。在这个网络中,用节点表示变量,有向边表示变量间的依赖关系。贝叶斯网络仅适合于对领域知识具有一定了解的情况,至少对变量间的依赖关系较清楚的情况。否则直接从数据中学习贝叶斯网的结构不但复杂性较高(随着变量的增加,指数级增加),网络维护代价昂贵,而且它的估计参数较多,为系统带来了高方差,影响了它的预测精度。当在任何一个对象中的缺失值数量很大时,存在指数爆炸的危险。人工神经网络可以有效的对付空值,但人工神经网络在这方面的研究还有待进一步深入展开。人工神经网络方法在数据挖掘应用中的局限性。

多数统计方法都假设输入数据是完整的且不包含缺失值,但现实生活中大多数数据集都包含了缺失值。因此,在进行下一步分析前,你要么删除,要么用合理的数值代理它们,SPSS、R、Python、SAS等统计软件都会提供一些默认的处理缺失值方法,但这些方法可能不是最优的,因此,学习各种各样的方法和他们的分支就显得非常重要。Little和Rubin的《Sstatistical Analysis With Missing Data 》是缺失值领域里经典的读本,值得一看。

㈤ 对于缺失值的处理

建议:不同场景基铅下的数据缺失机制不同,这需要工程师基于对业务选择合适的填充方法。

如何判断缺失值类型?
缺失值的分类按照数据缺失机制可分为:
可忽略的缺失

不可忽略的缺失

平常工作中遇到的缺失值大部分情况下是随机的(缺失变量和其他变量有关)

这个就可以用estimator来做了,选其中一个变量(y),然后用其他变量作为X,随便选个值填充X的缺失部分,用X train一个estimator,再预测y的缺失部分(大致思路)

此外有些数据是符合某种分布的,利用这个分布呢也可以填充缺失的数据,如(EM算法)

处理缺失数据的三个标准:
1. 非偏置的参数估计
不管你估计means, regressions或者是odds ratios,都希望参数估计可以准确代表真实的总体参数。在统计项中,这意味着估计需要是无偏的。有缺失值可能会影响无偏估计,所以需要处理。
2. 有效的能力:
删除缺失数据会降低采样的大小,因此会降低power。如果说问题是无偏的,那么得到的结果会是显着的,那么会有足够的能力来检验这个效力(have adequate power to detect your effects)。反之,整个检测可能失效。
3. 准确的标准差(影响p值和置信区间):
不仅需要参数估计无偏,还需要标准差估计准确,在统计推断中才会有效。

缺失值处理的方法大致分为这几类:1、删除法;2、基于插补的方法;3、基于模型的方法; 4、不处理; 5、映射高维

有些处理方法是基于完全随机缺失假设(MCAR),一般来说,当数据不是 MCAR 而 是随机缺失(MAR)时,这些方法是不适用的;而有些方法(如似然估计法)在 MAR 的假设下是适用的,因此,在进行缺失数据处理时,首先需要认真分析缺失数 据产生的原因,然后采取有针对性的补救措施,这样才能够获得无偏或弱偏估计。

此处关于使用多重插补来处理非随机缺失(MNAR)的问题,它其实效果不一定,也可能出现效果倒退的情况,总的说多重更适合MAR

注:此处一元与多元指的是仅有一个特征有缺失值与多个特征有缺失值

对于不同类别的缺失值的处理方法如上图。

以下展开介绍各个方法:

注: k-means插补 与KNN插补很相似,区别在于k-means是利用无缺失值的特征来寻找最近的N个点,然后用这N个点的我们所需的缺失的特征平均值来填充,而KNN则是先用均值填充缺失值再找最近搏迅好的N个点。

类似的还有 随机回归插补 :也优于纯回归插补

其他单一插补法:

与单一插补方法相比较,多重插补方法充分地考虑了数据的不确定性。多重插补的主要分为三个步骤,综合起来即为:插补、分析、合并。插补步是为每个缺失值都构造出 m 个可能的插补值,缺失模型具有不确定性,这些插补值能体现出模型的这个性质,利用这些可能插补值对缺失值进行插补就得到了 m 个完整数据集。分析步是对插补后的 m 个完整数据集使用一样的统计数据分析方法进行分析,同时得到 m 个统计结果。综合步就是把得到的这 m 个统计结果综合起来得到的分析结果,把这个分析结果作为缺失值的替代值。多重插补构造多个插补值主要是通过模拟的方式对估计量的分布进行推测,然后采用不同的模型对缺失值进行插补,这种插补是随机抽取的方式,这样以来能提高估计的有效性和可靠性。
多重插补-python手册

多重插补法主要有以下几种:

(使用回归、贝叶斯、随机森林、决策树等模型对缺失数据进行预测。)

基于已有的其他字段,将缺失字段作为目标变量进行预测,从而得到较昌喊为可能的补全值。如果带有缺失值的列是数值变量,采用回归模型补全;如果是分类变量,则采用分类模型补全。

常见能够自动处理缺失值模型包括:KNN、决策树和随机森林、神经网络和朴素贝叶斯、DBSCAN(基于密度的带有噪声的空间聚类)等。

处理思路:
自动插补 :例如XGBoost会通过training loss rection来学习并找到最佳插补值。
忽略 :缺失值不参与距离计算,例如:KNN,LightGBM
将缺失值作为分布的一种状态 :并参与到建模过程,例如:决策树以及变体。
不基于距离做计算 :因此基于值得距离计算本身的影响就消除了,例如:DBSCAN。

ID3、c4.5、cart、rf到底是如何处理缺失值的?

最精确的做法,把变量映射到高维空间。
比如性别,有男、女缺失三种情况,则映射成3个变量:是否男、否女、是否缺失。连续型变量也可以这样处理。比如Google、 网络的CTR预估模型,预处理时会把所有变量都这样处理,达到几亿维。又或者可根据每个值的频数,将频数较小的值归为一类'other',降低维度。此做法可最大化保留变量的信息。

前推法 (LOCF,Last Observation Carried Forward,将每个缺失值替换为缺失之前的最后一次观测值)与 后推法 (NOCB,Next Observation Carried Backward,与LOCF方向相反——使用缺失值后面的观测值进行填补)

这是分析可能缺少后续观测值的纵向重复测量数据的常用方法。纵向数据在不同时间点跟踪同一样本。当数据具有明显的趋势时,这两种方法都可能在分析中引入偏差,表现不佳。

线性插值 。此方法适用于具有某些趋势但并非季节性数据的时间序列。

季节性调整+线性插值 。此方法适用于具有趋势与季节性的数据。

总而言之,大部分数据挖掘的预处理都会使用比较方便的方法来处理缺失值,比如均值法,但是效果上并不一定好,因此还是需要根据不同的需要选择合适的方法,并没有一个解决所有问题的万能方法。

具体的方法采用还需要考虑多个方面的:

在做数据预处理时,要多尝试几种填充方法,选择表现最佳的即可。

总结来说,没有一个最完美的策略,每个策略都会更适用于某些数据集和数据类型,但再另一些数据集上表现很差。虽然有一些规则能帮助你决定选用哪一种策略,但除此之外,你还应该尝试不同的方法,来找到最适用于你的数据集的插补策略。

当前最流行的方法应该是 删除法、KNN、多重插补法

参考文献: 庞新生. 缺失数据处理方法的比较[J]. 统计与决策, 2010(24):152-155.

㈥ 数据清理中,处理缺失值的方法有哪些

由于调查、编码和录入误差,数据中可能存在一些无效值和缺失值,需要给予适当的处理。常用的处理方法有:估算,整例删除,变量删除和成对删除。

计算机俗称电脑,是一种用于高速计算的电子计算机器,可以进行数值计算,又可以进行逻辑计算,还具有存储记忆功能。是能够按照程序运行,自动、高速处理海量数据的现代化智能电子设备。由硬件系统和软件系统所组成,没有安装任何软件的计算机称为裸机。

可分为超级计算机、工业控制计算机、网络计算机、个人计算机、嵌入式计算机五类,较先进的计算机有生物计算机、光子计算机、量子计算机、神经网络计算机。蛋白质计算机等。

当今计算机系统的运算速度已达到每秒万亿次,微机也可达每秒几亿次以上,使大量复杂的科学计算问题得以解决。例如:卫星轨道的计算、大型水坝的计算、24小时天气预报的计算等,过去人工计算需要几年、几十年,而现在用计算机只需几天甚至几分钟就可完成。

科学技术的发展特别是尖端科学技术的发展,需要高度精确的计算。计算机控制的导弹之所以能准确地击中预定的目标,是与计算机的精确计算分不开的。一般计算机可以有十几位甚至几十位(二进制)有效数字,计算精度可由千分之几到百万分之几,是任何计算工具所望尘莫及的。

随着计算机存储容量的不断增大,可存储记忆的信息越来越多。计算机不仅能进行计算,而且能把参加运算的数据、程序以及中间结果和最后结果保存起来,以供用户随时调用;还可以对各种信息(如视频、语言、文字、图形、图像、音乐等)通过编码技术进行算术运算和逻辑运算,甚至进行推理和证明。

计算机内部操作是根据人们事先编好的程序自动控制进行的。用户根据解题需要,事先设计好运行步骤与程序,计算机十分严格地按程序规定的步骤操作,整个过程不需人工干预,自动执行,已达到用户的预期结果。

超级计算机(supercomputers)通常是指由数百数千甚至更多的处理器(机)组成的、能计算普通PC机和服务器不能完成的大型复杂课题的计算机。超级计算机是计算机中功能最强、运算速度最快、存储容量最大的一类计算机,是国家科技发展水平和综合国力的重要标志。

超级计算机拥有最强的并行计算能力,主要用于科学计算。在气象、军事、能源、航天、探矿等领域承担大规模、高速度的计算任务。

在结构上,虽然超级计算机和服务器都可能是多处理器系统,二者并无实质区别,但是现代超级计算机较多采用集群系统,更注重浮点运算的性能,可看着是一种专注于科学计算的高性能服务器,而且价格非常昂贵。

一般的超级计算器耗电量相当大,一秒钟电费就要上千,超级计算器的CPU至少50核也就是说是家用电脑的10倍左右,处理速度也是相当的快,但是这种CPU是无法购买的,而且价格要上千万。

阅读全文

与数据分析中缺失值的方法相关的资料

热点内容
钻石自取方法视频 浏览:103
win7文件夹选项在哪里设置方法 浏览:867
培养艺术生的方法和技巧 浏览:517
解决同一问题有很多种方法 浏览:46
武汉中风的康复训练方法 浏览:572
复制公式的方法有哪些 浏览:297
台阶减肥训练方法 浏览:941
铜锈在手上怎么清除最好的方法 浏览:190
简述奥尔夫音乐教学方法 浏览:994
医院绩效管理的常用方法 浏览:120
用空气炸锅做戚风蛋糕简单方法 浏览:715
怎么做剪纸画的方法 浏览:810
布鲁氏菌治疗方法 浏览:413
初三数学复习方法和技巧视频 浏览:531
bmi检验用什么检验方法 浏览:734
血液中元素分析检测方法 浏览:408
论文的研究方法主要在哪里 浏览:604
教学方法实物 浏览:957
42除4计算方法 浏览:408
茶盘的保养方法视频 浏览:929