导航:首页 > 研究方法 > 数据分析方法与实例

数据分析方法与实例

发布时间:2023-06-30 11:24:36

㈠ 数据分析方法

常见的分析方法有:分类分析,矩阵分析,漏斗分析,相关分析,逻辑树分析,趋势分析,行为轨迹分析,等等。 我用HR的工作来举例,说明上面这些分析要怎么做,才能得出洞见。

01) 分类分析
比如分成不同部门、不同岗位层级、不同年龄段,来分析人才流失率。比如发现某个部门流失率特别高,那么就可以去分析。

02) 矩阵分析
比如公司有价值观和能力的考核,那么可以把考核结果做出矩阵图,能力强价值匹配的员工、能力强价值不匹配的员工、能力弱价值匹配的员工、能力弱价值不匹配的员工各占多少比例,从而发现公司的人才健康度。

03) 漏斗分析
比如记录招聘数据,投递简历、通过初筛、通过一面、通过二面、通过终面、接下Offer、成功入职、通过试用期,这就是一个完整的招聘漏斗,从数据中,可以看到哪个环节还可以优化。

04) 相关分析
比如公司各个分店的人才流失率差异较大,那么可以把各个分店的员工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、员工年龄、管理人员年龄等)要素进行相关性分析,找到最能够挽留员工的关键因素。

05) 逻辑树分析
比如近期发现员工的满意度有所降低,那么就进行拆解,满意度跟薪酬、福利、职业发展、工作氛围有关,然后薪酬分为基本薪资和奖金,这样层层拆解,找出满意度各个影响因素里面的变化因素,从而得出洞见。

06) 趋势分析
比如人才流失率过去12个月的变化趋势。

07)行为轨迹分析
比如跟踪一个销售人员的行为轨迹,从入职、到开始产生业绩、到业绩快速增长、到疲惫期、到逐渐稳定。

㈡ 经典:5种常见的数据分析方法

任何一家公司都会面对或多或少的客户,产生千万甚至上亿的数据来洞察客户的行为,支撑自身公司业务的发展。

数据分析 是一个从数据中通过分析手段发现业务价值的过程。这个过程的起点可以是 确定我们的分析目的 ,这个过程的终点是 发现业务价值,提供数据支撑

个人理解的数据分析6大步骤:

下面介绍的是5种基于逻辑层面的数据分析方法:

PEST分析是指宏观环境的分析,宏观环境是指一切能够影响行业或者企业发展的宏观力量或者因素。一般适用于大型公司的战略规划:

通常是战略顾问用来帮助企业审视宏观环境,从而来匹配自身发展的一种分析方法

5W2H方法也称之为七何分析法,包含的内容是:

该方法适用于用 户行为分析、产品的营销活动 等,比如某家公司上架了一款新的销售产品:

所谓的4P指的是:

这是一种以市场为导向的组合营销理论。通过将四者的结合,同时协调配合发展,从而提高企业的市场份额,达到最终的营销获利目的。

SMART分析方法是一种基于目标的管理方法,即对目标的:

比如小明同学最近想找一份兼职的工作:

SWOT分析也叫做势态分析法,具体解释为:

该方法通常是用来确定企业或者产品的内部优势、劣势和来自外部的机会与威胁等,从而将公司战略规划与公司内外部的环境有机结合起来。比如某家公司的SWOT分析类似如下:

数据是从业务中产生的,数据本身没有价值。只有当我们利用一定的科技手段,从中挖掘出有效信息,才能体现出其重要的价值。

前段时间看过一本书,阿里出版的《马云.未来已来》,里面有谈到:

在《经济学人.商论》中也有过类似的结论:

数据来源于业务,但数据只有服务于业务才能体现出其价值。 数据分析 正是将数据和业务连接起来的有力手段!

㈢ 数据分析的六种基本分析方法

数据分析的六种基本分析方法:

1、对比分析法:常用于对纵向的、横向的、最为突出的、计划与实际的等各种相关数据的。例如:今年与去年同期工资收入的增长情况、3月CPI环比增长情况等。

2、趋势分析法:常用于在一段时间周期内,通过分析数据运行的变化趋势(上升或下降),为未来的发展方向提供帮助。例如:用电量的季节性波动、股市的涨跌趋势等。

3、相关分析法:常用于分析两个或多个变量之间的性质以及相关程度。例如:气温与用电量的相关性、运动量大小与体重的相关性等。

4、回归分析法:常用于分析一个或多个自变量的变化对一个特定因变量的影响程度,从而确定其关系。例如:气温、用电设备、用电时长等因素对用电量数值大小的影响程度、工资收入的高低对生活消费支出大小的影响程度等。

5、描述性分析法:常用于对一组数据样本的各种特征进行分析,以便于描述样本的各种及其所代表的总体的特征。例如:本月日平均用电量、上海市工资收入中位数等。

6、结构分析法:常用于分析数据总体的内部特征、性质和变化规律等。例如:各部分用电量占总用电的比重、生活消费支出构成情况等。

㈣ 数据可视化常用的五种方式及案例分析

概念借助于图形化的手段,清晰、快捷有效的传达与沟通信息。从用户的角度,数据可视化可以让用户快速抓住要点信息,让关键的数据点从人类的眼睛快速通往心灵深处。 数据可视化一般会具备以下几个特点:准确性、创新性 和 简洁性。
常用五种可视化方法
下面从最常用和实用的维度总结了如下5种数据可视化方法,让我们来一一看一下:
一、面积&尺寸可视化对同一类图形(例如柱状、圆环和蜘蛛图等)的长度、高度或面积加以区别,来清晰的表达不同指标对应的指标值之间的对比。
这种方法会让浏览者对数据及其之间的对比一目了然。制作这类数据可视化图形时,要用数学公式计算,来表达准确的尺度和比例。
a: 天猫的店铺动态评分天猫店铺动态评分模块右侧的条状图按精确的比例清晰的表达了不同评分用户的占比。从下图中我们第一眼就可以强烈的感知到5分动态评分的用户占绝对的比例。

b: 联邦预算图如下图,在美国联邦预算剖面图里,用不同高度的货币流清晰的表达了资金的来源去向,及每一项所占金额的比重。

c: 公司黄页-企业能力模型蜘蛛图如下图,通过蜘蛛图的表现,公司综合实力与同行平均水平的对比便一目了然。

二、颜色可视化
通过颜色的深浅来表达指标值的强弱和大小,是数据可视化设计的常用方法,用户一眼看上去便可整体的看出哪一部分指标的数据值更突出。a: 点击频次热力图比如下面这张眼球热力图,通过颜色的差异,我们可以直观的看到用户的关注点。

b: 2013年美国失业率统计在图中可以看到,通过对美国地图以州为单位的划分,用不同的颜色来代表不同的失业率等级范围,整个的全美失业率状况便尽收眼底了。

c: 美国手机用户城市分布图中红点是用iPhone的人,绿点是用安卓的人。这两张在微博上看到的图,第一张是美国一个城市的一览,第二张图特写了纽约的市中心,尤其是曼哈顿地区。我们可以看到在市中心和主干道的人用iPhone居多,而用安卓的人都在郊区。这也引起了人们的热议,有的说在美国富人都住郊区别墅,所以富人爱用安卓手机;有的反驳说曼哈顿地区的人几乎都用iPhone,说明富人喜欢用iPhone手机。不管结论如何,都足以说明用户都被这些图所吸引,所以可视化的方式效果真的很直观。

注:科学家统计了2年里30亿条含有地理数据的twitter推文,根据客户端总结出来的数据。
三、图形可视化在我们设计指标及数据时,使用有对应实际含义的图形来结合呈现,会使数据图表更加生动的被展现,更便于用户理解图表要表达的主题。
Examples:
a: iOS手机及平板分布如下图所示,当展示使用不同类型的手机和平板用户占比时,直接用总的苹果图形为背景来划分用户比例,让用户第一眼就可以直观的看到这些图是在描述苹果设备的,直观而清晰。

b: 人人网用户的网购调查下图可以看出,该数据可视化的设计直接采用男性和女性的图形,这样的设计让分类一目了然。再结合了颜色可视化(左面蓝色右面粉色),同时也采用了面积&尺寸可视化,不同的比例用不同长度的条形。这些可视化方法的组合使用,大大加强了数据的可理解性。

四、地域空间可视化当指标数据要表达的主题跟地域有关联时,我们一般会选择用地图为大背景。
这样用户可以直观的了解整体的数据情况,同时也可以根据地理位置快速的定位到某一地区来查看详细数据。
a: 美国最好喝啤酒的产地分布下图中,通过以美国地图为大背景,清晰的记录了不同州所产啤酒在1987-2007年间在美国啤酒节中获得的奖牌累计总数。再辅以颜色可视化的方法,让用户清晰的看到美国哪些州更盛产好喝的啤酒。

五、概念可视化通过将抽象的指标数据转换成我们熟悉的容易感知的数据时,用户便更容易理解图形要表达的意义。
a: 厕所贴士下图是厕所里贴在墙上的节省纸张的环保贴士,用了概念转换的方法,让用户清晰的感受到员工们一年的用纸量之多。
如果只是描述擦手纸的量及堆积可达高度,我们还没有什么显性化概念。但当用户看到用纸的堆积高度比世界最高建筑还高、同时需砍伐500多颗树时,想必用户的节省纸张甚至禁用纸张的情怀便油然而生了。所以可见用概念转换的方法是多么的重要和有效。

b: Flickr云存储空间达1TB的可视化描述Flickr对云存储空间升至1TB确实是让人开心的事情,但相信很多人对这一数量级所代表的含义并不清晰。
所以Flickr在宣传这一新的升级产品时,采用了概念可视化的方案。从下图可以看出,用户可以动态的选择照片的大小,之后Flickr会采用动态交互的方式计算和显示出1TB能容纳多少张对应大小的图片。这样一来,用户便有了清晰的概念,知道这1TB是什么量级的容量了。

注意事项在总结了常见维度的数据可视化方法和范例之后,要再次总体强调下做数据可视化设计时的注意事项,总结了三点如下:
1)设计的方案至少适用于两个层次:一是能够整体展示大的图形轮廓,让用户能够快速的了解图表所要表达的整体概念;之后再以合适的方式对局部的详细数据加以呈现(如鼠标hover展示)。
2)做数据可视化时,上述的五个方法经常是混合用的,尤其是做一些复杂图形和多维度数据的展示时。
3)做出的可视化图表一定要易于理解,在显性化的基础上越美观越好,切忌华而不实。
总结:作为设计师,除了掌握方法来有针对性的设计之外,还要在平时多留心积累素材,同时培养自己的创造力和专业素养,保持一颗好奇心,才能真正的设计出样式精美又实用的数据可视化图表。

㈤ 常见的数据分析方法有哪些

常见的数据分析方法有哪些?
1.趋势分析
当有大量数据时,我们希望更快,更方便地从数据中查找数据信息,这时我们需要使用图形功能。所谓的图形功能就是用EXCEl或其他绘图工具来绘制图形。
趋势分析通常用于长期跟踪核心指标,例如点击率,GMV和活跃用户数。通常,只制作一个简单的数据趋势图,但并不是分析数据趋势图。它必须像上面一样。数据具有那些趋势变化,无论是周期性的,是否存在拐点以及分析背后的原因,还是内部的或外部的。趋势分析的最佳输出是比率,有环比,同比和固定基数比。例如,2017年4月的GDP比3月增加了多少,这是环比关系,该环比关系反映了近期趋势的变化,但具有季节性影响。为了消除季节性因素的影响,引入了同比数据,例如:2017年4月的GDP与2016年4月相比增长了多少,这是同比数据。更好地理启此解固定基准比率,即固定某个基准点,例如,以2017年1月的数据为基准点,固定基准比率是2017年5月数据与该数据2017年1月之间的比较。
2.对比分析
水平对比度:水平对比度是与自己进行比较。最常见的数据指标是需要与目标值进行比较,以了解我们是否已完成目标;与上个月相比,要了解我们环比的增长情况。
纵向对比:简单来说,就是与其他对比。我们必须与竞争对手进行比较以了解我们在市场上的份额和地位。
许多人可能会说比较分析听起来很简单。让我举一个例子。有一个电子商务公司的登录页面。昨天的PV是5000。您如何看待此类数据?您不会有任何感觉。如果此签到页面的平均PV为10,000,则意味着昨天有一个主要问题。如果签到页面的平均PV为2000,则昨天有一个跳跃。数据只能通过比较才有意义。
3.象限分析
根据不同的数据,每个比较对象分悄雀迅为4个象限。如果将IQ和EQ划分,则可以将其划分为两个维度和四个象限,每个人都有自己的象限。一般来说,智商保证一个人的下限,情商提高一个人的上限。
说一个象限分析方法的例子,在实际工作中使用过:通常,p2p产品的注册用户由第三方渠道主导。如果您可以根据流量来源的质量和数量划分四个象限,然后选择一个固定的时间点,比较每个渠道的流量成本效果,则该质量可以用作保留的总金额的维度为标准。对于高质量和高数量的通道,继续增加引入高质量和低数量的通道,低质量和低数量的通过,低质量和高数量的尝试策略和要求,例如象限分析可以让我们比较和分析时间以获得非常直观和快速的结果。
4.交叉分析
比较分析包括水平和垂直比较。如果要同时比较水平和垂直方岁乱向,则可以使用交叉分析方法。交叉分析方法是从多个维度交叉显示数据,并从多个角度执行组合分析。
分析应用程序数据时,通常分为iOS和Android。
交叉分析的主要功能是从多个维度细分数据并找到最相关的维度,以探究数据更改的原因。

㈥ 9种常用的数据分析方法(实用干货,强烈建议收藏)

所谓公式拆解法就是针对某个指标,用公式层层分解该指标的影响因素。
举例:分析某产品的销售额较低的原因,用公式法分解

对比法就是用两组或两组以上的数据进行比较,是最通用的方法。

我们知道孤立的数据没有意义,有对比才有差异。比如在时间维度上的同比和环比、增长率、定基比,与竞争对手的对比、类别之间的对比、特征和属性对比等。对比法可以发现数据变化规律,使用频繁,经常和其他方法搭配使用。

下图的AB公司销售额对比,虽然A公司销售额总体上涨且高于B公司,但是B公司的增速迅猛,高于A公司,即使后期增速下降了,最后的销售额还是赶超。

A/Btest,是将Web或App界面或流程的两个或多个版本,在同一时间维度,分别让类似访客群组来访问,收集各群组的用户体验数据和业务数据,最后分析评估出最好版本正式采用。A/Btest的流程如下:

(1)现状分析并建立假设:分析业务数据,确定当前最关键的改进点,作出优化改进的假设,提出优化建议;比如说我们发现用户的转化率不高,我们假设是因为推广的着陆页面带来的转化率太低,下面就要想办法来进行改进了

(2)设定目标,制定方案:设置主要目标,用来衡量各优化版本的优劣;设置辅助目标,用来评估优化版本对其他方面的影响。

(3)设计与开发:制作2个或多个优化版本的设计原型并完成技术实现。

(4)分配流量:确定每个线上测试版本的分流比例,初始阶段,优化方案的流量设置可以较小,根据情况逐渐增加流量。

(5)采集并分析数据:收集实验数据,进行有效性和效果判断:统计显着性达到95%或以上并且维持一段时间,实验可以结束;如果在95%以下,则可能需要延长测试时间;如果很长时间统计显着性不能达到95%甚至90%,则需要决定是否中止试验。

(6)最后:根据试验结果确定发布新版本、调整分流比例继续测试或者在试验效果未达成的情况下继续优化迭代方案重新开发上线试验。
流程图如下:

通过对两种及以上维度的划分,运用坐标的方式表达出想要的价值。由价值直接转变为策略,从而进行一些落地的推动。象限法是一种策略驱动的思维,常与产品分析、市场分析、客户管理、商品管理等。比如,下图是一个广告点击的四象限分布,X轴从左到右表示从低到高,Y轴从下到上表示从低到高。

高点击率高转化的广告,说明人群相对精准,是一个高效率的广告。高点击率低转化的广告,说明点击进来的人大多被广告吸引了,转化低说明广告内容针对的人群和产品实际受众有些不符。高转化低点击的广告,说明广告内容针对的人群和产品实际受众符合程度较高,但需要优化广告内容,吸引更多人点击。低点击率低转化的广告,可以放弃了。还有经典的RFM模型,把客户按最近一次消费(Recency)、消费频率(Frequency)、消费金额 (Monetary)三个维度分成八个象限。

通过象限分析法,将有相同特征的事件进行归因分析,总结其中的共性原因。例如上面广告的案例中,第一象限的事件可以提炼出有效的推广渠道与推广策略,第三和第四象限可以排除一些无效的推广渠道;

(2)建立分组优化策略
针对投放的象限分析法可以针对不同象限建立优化策略,例如RFM客户管理模型中按照象限将客户分为重点发展客户、重点保持客户、一般发展客户、一般保持客户等不同类型。给重点发展客户倾斜更多的资源,比如VIP服务、个性化服务、附加销售等。给潜力客户销售价值更高的产品,或一些优惠措施来吸引他们回归。

帕累托法则,源于经典的二八法则。比如在个人财富上可以说世界上20%的人掌握着80%的财富。而在数据分析中,则可以理解为20%的数据产生了80%的效果需要围绕这20%的数据进行挖掘。往往在使用二八法则的时候和排名有关系,排在前20%的才算是有效数据。二八法是抓重点分析,适用于任何行业。找到重点,发现其特征,然后可以思考如何让其余的80%向这20%转化,提高效果。

一般地,会用在产品分类上,去测量并构建ABC模型。比如某零售企业有500个SKU以及这些SKU对应的销售额,那么哪些SKU是重要的呢,这就是在业务运营中分清主次的问题。

常见的做法是将产品SKU作为维度,并将对应的销售额作为基础度量指标,将这些销售额指标从大到小排列,并计算截止当前产品SKU的销售额累计合计占总销售额的百分比。

百分比在 70%(含)以内,划分为 A 类。百分比在 70~90%(含)以内,划分为 B 类。百分比在 90~100%(含)以内,划分为 C 类。以上百分比也可以根据自己的实际情况调整。

ABC分析模型,不光可以用来划分产品和销售额,还可以划分客户及客户交易额等。比如给企业贡献80%利润的客户是哪些,占比多少。假设有20%,那么在资源有限的情况下,就知道要重点维护这20%类客户。

漏斗法即是漏斗图,有点像倒金字塔,是一个流程化的思考方式,常用于像新用户的开发、购物转化率这些有变化和一定流程的分析中。

上图是经典的营销漏斗,形象展示了从获取用户到最终转化成购买这整个流程中的一个个子环节。相邻环节的转化率则就是指用数据指标来量化每一个步骤的表现。所以整个漏斗模型就是先将整个购买流程拆分成一个个步骤,然后用转化率来衡量每一个步骤的表现,最后通过异常的数据指标找出有问题的环节,从而解决问题,优化该步骤,最终达到提升整体购买转化率的目的。

整体漏斗模型的核心思想其实可以归为分解和量化。比如分析电商的转化,我们要做的就是监控每个层级上的用户转化,寻找每个层级的可优化点。对于没有按照流程操作的用户,专门绘制他们的转化模型,缩短路径提升用户体验。

还有经典的黑客增长模型,AARRR模型,指Acquisition、Activation、Retention、Revenue、Referral,即用户获取、用户激活、用户留存、用户收益以及用户传播。这是产品运营中比较常见的一个模型,结合产品本身的特点以及产品的生命周期位置,来关注不同的数据指标,最终制定不同的运营策略。

从下面这幅AARRR模型图中,能够比较明显的看出来整个用户的生命周期是呈现逐渐递减趋势的。通过拆解和量化整个用户生命周期各环节,可以进行数据的横向和纵向对比,从而发现对应的问题,最终进行不断的优化迭代。

用户路径分析追踪用户从某个开始事件直到结束事件的行为路径,即对用户流向进行监测,可以用来衡量网站优化的效果或营销推广的效果,以及了解用户行为偏好,其最终目的是达成业务目标,引导用户更高效地完成产品的最优路径,最终促使用户付费。如何进行用户行为路径分析?

(1)计算用户使用网站或APP时的每个第一步,然后依次计算每一步的流向和转化,通过数据,真实地再现用户从打开APP到离开的整个过程。
(2)查看用户在使用产品时的路径分布情况。例如:在访问了某个电商产品首页的用户后,有多大比例的用户进行了搜索,有多大比例的用户访问了分类页,有多大比例的用户直接访问的商品详情页。
(3)进行路径优化分析。例如:哪条路径是用户最多访问的;走到哪一步时,用户最容易流失。
(4)通过路径识别用户行为特征。例如:分析用户是用完即走的目标导向型,还是无目的浏览型。
(5)对用户进行细分。通常按照APP的使用目的来对用户进行分类。如汽车APP的用户可以细分为关注型、意向型、购买型用户,并对每类用户进行不同访问任务的路径分析,比如意向型的用户,他进行不同车型的比较都有哪些路径,存在什么问题。还有一种方法是利用算法,基于用户所有访问路径进行聚类分析,依据访问路径的相似性对用户进行分类,再对每类用户进行分析。

以电商为例,买家从登录网站/APP到支付成功要经过首页浏览、搜索商品、加入购物车、提交订单、支付订单等过程。而在用户真实的选购过程是一个交缠反复的过程,例如提交订单后,用户可能会返回首页继续搜索商品,也可能去取消订单,每一个路径背后都有不同的动机。与其他分析模型配合进行深入分析后,能为找到快速用户动机,从而引领用户走向最优路径或者期望中的路径。
用户行为路径图示例:

用户留存指的是新会员/用户在经过一定时间之后,仍然具有访问、登录、使用或转化等特定属性和行为,留存用户占当时新用户的比例就是留存率。留存率按照不同的周期分为三类,以登录行为认定的留存为例:
第一种 日留存,日留存又可以细分为以下几种:
(1)次日留存率:(当天新增的用户中,第2天还登录的用户数)/第一天新增总用户数
(2)第3日留存率:(第一天新增用户中,第3天还有登录的用户数)/第一天新增总用户数
(3)第7日留存率:(第一天新增用户中,第7天还有登录的用户数)/第一天新增总用户数
(4)第14日留存率:(第一天新增用户中,第14天还有登录的用户数)/第一天新增总用户数
(5)第30日留存率:(第一天新增用户中,第30天还有登录的用户数)/第一天新增总用户数

第二种 周留存,以周度为单位的留存率,指的是每个周相对于第一个周的新增用户中,仍然还有登录的用户数。

第三种 月留存,以月度为单位的留存率,指的是每个月相对于第一个周的新增用户中,仍然还有登录的用户数。留存率是针对新用户的,其结果是一个矩阵式半面报告(只有一半有数据),每个数据记录行是日期、列为对应的不同时间周期下的留存率。正常情况下,留存率会随着时间周期的推移而逐渐降低。下面以月留存为例生成的月用户留存曲线:

聚类分析属于探索性的数据分析方法。通常,我们利用聚类分析将看似无序的对象进行分组、归类,以达到更好地理解研究对象的目的。聚类结果要求组内对象相似性较高,组间对象相似性较低。在用户研究中,很多问题可以借助聚类分析来解决,比如,网站的信息分类问题、网页的点击行为关联性问题以及用户分类问题等等。其中,用户分类是最常见的情况。

常见的聚类方法有不少,比如K均值(K-Means),谱聚类(Spectral Clustering),层次聚类(Hierarchical Clustering)。以最为常见的K-means为例,如下图:

可以看到,数据可以被分到红蓝绿三个不同的簇(cluster)中,每个簇应有其特有的性质。显然,聚类分析是一种无监督学习,是在缺乏标签的前提下的一种分类模型。当我们对数据进行聚类后并得到簇后,一般会单独对每个簇进行深入分析,从而得到更加细致的结果。

阅读全文

与数据分析方法与实例相关的资料

热点内容
测电仪器使用方法图片 浏览:294
现代更换车身电脑匹配方法 浏览:374
简单的所有雪糕制作方法 浏览:164
ob德国卫生棉使用方法 浏览:349
兔子喂养方法图片 浏览:359
黄连套种玉米种植方法 浏览:888
唾液检测幽门螺旋杆菌方法 浏览:508
治骨性关节炎的锻炼方法 浏览:41
零件几何测量检测方法 浏览:669
萧的使用方法 浏览:113
快速背书的方法gif 浏览:264
如何去除体内湿气最快方法 浏览:957
宝马ak90软件安装方法 浏览:915
有限元分析方法有哪些 浏览:207
视频回答问题及解决方法 浏览:81
脑梗保守治疗方法 浏览:765
橡胶履带横挡安装方法 浏览:208
木蜡油制作方法视频 浏览:687
21岁正确的增高方法 浏览:649
温度控制回路联校的方法和步骤 浏览:35