① 单因素方差分析多重比较是指什么
单因素方差分析多重比较是指:用来测试某一个控制变量的不同水平是否给观察变量造成显着差异和变动。
通过不同水平下,各总体均值服从方差相同的正态分布。所以方差分析就是研究不同水平下各个总体的均值是否有显着的差异。
统计推断方法是计算F统计量,进行F检验,总的变异平方和 SST,控制变量引起的离差SSA(Between Group离差平方和),另一部分随机变量引起的SSE(组内Within Group离差平方和),SST=SSA+SSE。
多重比较检验:单因素方差分析只能够判断控制变量是否对观察变量产生了显着影响,多重比较检验可以进一步确定控制变量的不同水平对观察变量的影响程度如何,那个水平显着,哪个不显着。
单因素方差分析多重比较有两两比较方法:
1、LSD法:实际上就是t检验的变形,只是在变异和自由度的计算上利用了整个样本信息,因此仍然存在放大一类错误的问题。
2、Scheffe法:当各组人数不相等,或者想进行复杂的比较时,用此法较为稳妥。但它相对比较保守。
3、S-N-K法:是运用最广泛的一种两两比较方法。它采用Student Range 分布进行所有各组均值间的配对比较。该方法保证在H0真正成立时总的α水准等于实际设定值,即控制了一类错误。
4、Tukey法:对一、二类问题控制得很好,首选。
5、Bonferroni法:LSD法的改进,有效控制假阳性。
② 多变量实验设计的多变量实验设计的优缺点
优点:(1)突出优点是它能够研究多个变量之间的交互作用(Interaction)。(2)由于多变量实验设计考察的影响自变量的因素较多,因此,得出的结论与实际情况更为接近,结果的推论性也相应提高。(3)在统计分析方法上,多数的参数推论统计分析方法都可以用于比较自变量的不同水平之间的显着效应,针对不同类型的因素实验设计,还有相应的方差分析方法,并可以通过多重比较方法对结果进行进一步的分析。
缺点:(1)需要耗费更多的人力、时间、物力和财力。(2)选择的因素和因素水平过多时,主试或实验者对实验的实施过程可能会失去良好控制。(3)结果解释的复杂性。多变量实验设计的方差分析结果包括各因素的主效应和交互作用,因素和因素的水平越多,主效应和交互作用的解释就越困难。
③ 方差分析中方差齐性时常用的多重比较检验方法有哪些
1、图基法(Tukey's Method)又称T多重比较法,是用来比较均值 和 (g≠h)的所有可能的两两差异的一种联立检验( a simultaneous test) ( Tukey,1953)。目标是为所有两两比较构建100(1-α)%的置信区间。
这种方法的基础是学生化的极差分布( studentized range distribution)。令r为从均值为μ、方差为σ2的正态分布中得到的一些独立观察的极差(即最大值减最小值),令v为误差的自由度数目(多重比较中为N-G)。
2、谢弗法( Scheffé's method) 又称S多重比较法,也为多重比较构建一个100(1 -α) %的联立置信区间( Scheffé,1953,1959)。区间由下式给出:
表示自由度为G-1和N-G的F分布的100(1 -α)百分数点。
谢弗法更具有普适性,因为所有可能的对比都可用它来检验统计显着性,
而且可为参数的相应线性函数构建置信区间
(3)方差分析缺点改进方法扩展阅读
图基法和谢弗法的比较
作为两种主要的多重比较方法,图基法和谢弗法各有其优缺点,总结如下:
1、谢弗法可应用于样本量不等时的多重比较,而原始的图基法只适用于样本量相同时的比较。
2、在比较简单成对差异( simple pairwise differences)时,图基法最具效力,给出更窄的置信区间,虽然它对于广义比对( general contrasts) 也可适用。
3、与此相比,对于涉及广义比对的比较,谢弗法更具效力,给出更窄的置信区间。
4、如果F检验显着,那么谢弗法将从所有可能的比对(contrasts)中至少检测出一对比对是统计显着的。
5、谢弗法应用起来更为方便,因为F分布表比图基法中使用的学生化极差分布更容易得到。
6、正态性假定和同方差性假定对于图基法比对于谢弗法更加重要